
Chapter 5

Ensembles

5.1 Characteristic variables

In chapter 3 we have introduced various thermodynamic functions, with differentials

dU = TdS − PdV + µdN (5.1)

dH = TdS + V dP + µdN (5.2)

dA = −SdT − PdV + µdN (5.3)

dG = −SdT + V dP + µdN (5.4)

So, for example, instead of using S, V and N as independent variables for the energy
U , we changed to T , V and N as independent variables for the free energy A.

Each thermodynamic function is associated with a special set of variables, called
its characteristic variables. These characteristic variables are exactly the terms
appearing after the differentials “d” in the list above. Knowing a thermodynamic
function as a function of its characteristic variables, we know everything there is to
know (thermodynamically speaking) about the system.

Let us first consider the internal energy U . Suppose we are given U as a function
of entropy and volume, U = U(S, V ) (for brevity we ignore the dependence on N).
Then

U = U(S, V ) (5.5)

T =

(
∂U

∂S

)

V

= T (S, V ) (5.6)

P = −
(
∂U

∂V

)

S

= P (S, V ). (5.7)

This is all there is. All other thermodynamic quantities can now be calculated. For
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5. ENSEMBLES

example the heat capacity at constant volume:

T = T (S, V ) → S = S(T, V ) (5.8)

CV = T

(
∂S

∂T

)

V

= CV (T, V ), (5.9)

or, if inverting to S(T, V ) is too difficult,

CV = T

(
∂S

∂T

)

V

=
T

(
∂T
∂S

)

V

=

(
∂U
∂S

)

V
(

∂2U
∂S2

)

V

= CV (S, V ). (5.10)

On the other hand, if we are given the energy U as a function of temperature
and volume, U = F (T, V ), we cannot know everything about the system:

U = F1

((
∂U

∂S

)

V

, V

)

→
(
∂U

∂S

)

V

= F2(U, V ) (5.11)

(
∂S

∂U

)

V

= F3(U, V ) (5.12)

S(U, V ) = F4(V ) +

∫ U

F3(U, V )dU. (5.13)

So we can find the energy dependence of the entropy, but not its volume dependence
because we cannot derive the function F4(V ). We are lacking information.

This example shows why S and V are called the characteristic variables of the
energy U . In the same way it may be shown that the number of particles N is
also a characteristic variable of the energy U . The characteristic variables of the
thermodynamic functions we have encountered up to now are given by:

U = U(N, V, S) (5.14)

H = H(N,P, S) (5.15)

A = A(N, V, T ) (5.16)

G = G(N,P, T ). (5.17)

5.2 The canonical ensemble (N,V,T)

We will now explore how we can change variables in statistical physics.
Consider a system A immersed in a very large thermal reservoir A’, see Fig. 5.1

(top). The boundaries between A and A’ are impenetrable to particles, but they
allow for energy to be exchanged. The composite system of A+A’ is adiabatically
sealed from the rest of the universe and has a total energy U tot. If at any time the
system A is in a state characterised by an energy ǫ, then the reservoir must have an
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5. ENSEMBLES

Figure 5.1: (top) A given system A
immersed in a thermal reservoir A’.
Exchange of energy (heat) is possi-
ble. (bottom) The density of states
in A is a sharply increasing function
of the system’s energy ǫ. The den-
sity of states in A’ is a sharply de-
creasing function of U tot − ǫ. The
integrand of Eq. (5.18) is therefore
sharply peaked around some value
ǫ = U .

energy U tot − ǫ. The total number of ways to combine the density of states Ωth of
the thermal reservoir with the density of states Ω of the system is therefore

Ωtot =

∫

dǫ Ωth(U tot − ǫ)Ω(ǫ). (5.18)

The integrand of this equation is a sharply peaked function around some value ǫ = U ,
see Fig. 5.1 (bottom). We are therefore only interested in values of ǫ close to ǫ = U .
Using the same arguments as in section 4.1 it is easy to show that the maximum
occurs when

T = T th, (5.19)

as expected for a system in contact with a thermal reservoir. For the density of
states of the thermal reservoir we now write

Ωth(U tot − ǫ) = Ωth(U tot − U + U − ǫ)

= exp

[
Sth(U tot − U + U − ǫ)

kB

]

≈ exp

[
Sth(U tot − U)

kB

+
∂Sth

∂U

∣
∣
∣
∣
U tot−U

U − ǫ

kB

]

= exp

[
Sth(U tot − U)

kB
+ β(U − ǫ)

]

, (5.20)

where we have made a first order Taylor expansion around ǫ = U , and defined
β = 1/(kBT ). The total density of states of the composite system is therefore

Ωtot =

∫

dǫ Ωth(U tot − ǫ)Ω(ǫ)

= exp

[
Sth(U tot − U)

kB

]

exp (βU)

∫

dǫ exp (−βǫ) Ω(ǫ). (5.21)
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The last integral defines the partition function Q.1 The entropy of the composite
system can now be expressed as

Stot = kB ln Ωtot

= Sth(U tot − U) +
U

T
+ kB lnQ (5.22)

= Sth + S. (5.23)

The entropy of the system is therefore given by

S =
U

T
+ kB lnQ. (5.24)

Making use of Eq. (3.9) the free energy A of the system can now be expressed as

A = U − TS = −kBT lnQ. (5.25)

Note that Q depends on the variables N , V , and T . Of all the thermodynamic
functions it is the free energy A that is directly proportional to lnQ. This is no
coincidence, since A is the thermodynamic function whose characteristic variables
are also N , V , and T . Knowing Q as a function of these variables allows us to
calculate all thermodynamic properties of the system (Problem 5-1). Depending on
the representation of the energy states, the partition function Q may be expressed
as an integral

Q =

∫

dǫ Ω(ǫ)e−βǫ, (5.26)

as a sum over all states2

Q =
∑

i

e−βǫi, (5.27)

or as a sum over energy levels

Q =
∑

n

Ωne−βEn , (5.28)

where Ωn is the degeneracy of energy level n.

1Do not confuse the partition function with the total amount of heat Q added to a system. It
will always be clear from the context which is implied.

2This is why Q is sometimes also referred to as the sum-of-states
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5.3 Canonical treatment of the ideal gas

In section 2.2.4 we have treated the ideal gas of N particles in a box of size V = L3,
the energy of which is given by

En1,...,n3N
=

h2

8mL2
(n2

1 + . . .+ n2
3N). (5.29)

We will now try to find the free energy A of the ideal gas by first calculating its
partition function. Each of the quantum numbers ni can have a non-negative integer
value, so Q is calculated as

Q =
1

N !

∞∑

n1=1

. . .

∞∑

n3N=1

e−( βh2

8mL2
)n2

1 × . . .× e−( βh2

8mL2
)n2

3N =
q3N

N !
(5.30)

q ≡
∞∑

n=1

e−( βh2

8mL2
)n2 ≈

∫ ∞

0

dn e−( βh2

8mL2
)n2

=

√

π8mL2

4βh2
= L

√

2πmkBT

h2
. (5.31)

Note that we have taken into account an additional factor N ! because of quantum
symmetry. The free energy is now given by

A = −kBT ln

(
q3N

N !

)

= −NkBT ln

[(
2πmkBT

h2

)3/2

e
V

N

]

. (5.32)

All thermodynamic quantities can now be calculated. In Problem 5-2 you are asked
to calculate the energy U and pressure P .

5.4 Canonical treatment of the harmonic crystal

In section 2.2.3 we have introduced the harmonic crystal and shown that its energy
is given by

En1,...n3N
= ~ω(n1 +

1

2
) + . . .~ω(n3N +

1

2
). (5.33)
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Each of the quantum numbers ni can have any non-negative integer value. Therefore
the partition function Q is given by3

Q =

∞∑

n1=0

. . .

∞∑

n3N=0

e−β~ω(n1+ 1

2
) × . . .× e−β~ω(n3N + 1

2
)

= exp

(

−3N

2
β~ω

)[ ∞∑

n=0

e−β~ωn

]3N

= exp

(

−3N

2
β~ω

)[
1

1 − e−β~ω

]3N

. (5.34)

The free energy is then

A = −kBT lnQ =
3N

2
~ω + 3NkBT ln

(
1 − e−~ω/kBT

)
. (5.35)

All thermodynamic quantities can now be calculated. For example, the entropy is
found from S = − (∂A/∂T )N,V and the heat capacity from CV = T (∂S/∂T )N,V =

−T (∂2A/∂T 2)N,V , yielding the same result as Eq. (3.27) obtained through another
route! (Problem 5-3.)

5.5 The grand canonical ensemble (µ, V, T)

Consider a system B immersed in a very large system B’, see Fig. 5.2 (top). The
composite system B+B’ is immersed in a thermal reservoir and enclosed by walls
which allow for energy to be exchanged. The boundaries between B and B’, however,
are open, i.e. they allow for both particles and energy to be exchanged. B’ could for
instance be a certain small, but still macroscopically large, region of the composite
system. If at any time the system B is in a state characterised by a number of
particles n, then the reservoir B’ must have N tot − n particles, where N tot is the
total number of particles in the composite system. Because B and B’ are in thermal
contact, and B’ is in contact with an external thermal reservoir, the temperature T
is constant throughout the composite system. For each value of n we may therefore
treat B and B’ in the canonical ensemble, and sum over all possible values of n. The
total partition function then reads

Qtot =

Ntot
∑

n=0

Qth
Ntot−nQn. (5.36)

3Note that, because of the localisation of the particles to the lattice points, they are in principle
distinguishable. In this case we therefore do not include the factor N ! in the partition function.
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Figure 5.2: (top) A given system B
immersed in a thermal and particle
reservoir B’. Exchange of both en-
ergy (heat) and particles is possible.
(bottom) The partition function of
B is a sharply increasing function of
the system’s number of particles n,
while the partition function of B’ is
a sharply decreasing function of n.
The product Qth

Ntot−nQn is therefore
sharply peaked around some value
n = N .

The partition function Qn of the system B is a sharply increasing function of n, while
the partition function Qth

Ntot−n of the reservoir B’ is a sharply decreasing function of
n. The product Qth

Ntot−nQn consequently is a sharply peaked function around some
value n = N , see Fig. 5.2 (bottom). The maximum occurs when

d

dn
Qth

Ntot−nQn = Qth
Ntot−nQn

d

dn
ln
{
Qth

Ntot−nQn

}

= Qth
Ntot−nQn

{
µth

kBT
− µ

kBT

}

= 0, (5.37)

where we have used that µ = (∂A/∂n)V,T and Eq. (5.25). The maximum is therefore
determined by the condition that the chemical potential in the system B equals the
chemical potential of the reservoir B’,

µ = µth. (5.38)

Making a first order Taylor expansion around n = N we find

Qth
Ntot−n = exp

{
−βAth

Ntot−n

}

= exp

{

−β
[

Ath
Ntot−N +

∂Ath
Ntot−n

∂n

∣
∣
∣
∣
n=N

(n−N)

]}

= exp
{
−βAth

Ntot−N − βµ (N − n)
}

(5.39)

Qtot = exp
{
−βAth

Ntot−N − βµN
}

Ntot
∑

n=0

Qneβµn. (5.40)

The last sum defines the grand canonical partition function Ξ. Since the reservoir
B’ is assumed to be much larger than the system B, the total number of particles
N tot is much larger than N and may for all practical purposes be considered infinite:

Ξ ≡
∞∑

n=0

Qneβµn. (5.41)
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The free energy of the composite system B+B’ is now expressed as

Atot = −kBT lnQtot = Ath
Ntot−N + µN − kBT ln Ξ. (5.42)

We therefore identify the free energy of the system B as

A = µN − kBT lnΞ. (5.43)

Since µN is the Gibbs free energy, see Eq. (3.80), we find the following relation

PV = kBT ln Ξ. (5.44)

Of all thermodynamic functions, it is PV that is directly proportional to ln Ξ. Again
this is no coincidence: Ξ depends on the variables µ, V , and T , which are exactly
the characteristic variables of PV , see Problem 5-4. Knowing Ξ as a function of
these variables allows us to calculate all thermodynamic properties of the system
(Problem 5-5).
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Problems

5-1. Thermodynamic properties from the canonical partition function.
Suppose we know the canonical partition funtion Q(N, V, T ). Using thermodynamic
relations, show that we can express the energy, pressure, and entropy as

U = kBT
2

(
∂ lnQ

∂T

)

V,N

P = kBT

(
∂ lnQ

∂V

)

T,N

S = kBT

(
∂ lnQ

∂T

)

V,N

+ kB lnQ.

5-2. Energy and pressure of an ideal gas. Starting from Eq. (5.32), calculate
the energy U and pressure P of an ideal gas as a function of (N, V, T ).

5-3. Entropy and specific heat of the harmonic crystal. Starting from the
free energy of a harmonic crystal, Eq. (5.35), calculate its entropy and specific heat
at constant volume.

5-4. Characteristic variables of PV . Show that the thermodynamic function
PV has characteristic variables µ, V , and T . Hint: Gibbs-Duhem.

5-5. Thermodynamic properties from the grand canonical partition func-
tion. Suppose we know the grand canonical partition funtion Ξ(µ, V, T ). Using
thermodynamic relations, prove the following relations

P = kBT

(
∂ lnΞ

∂V

)

T,µ

S = kBT

(
∂ lnΞ

∂T

)

V,µ

+ kB ln Ξ

N = kBT

(
∂ lnΞ

∂µ

)

V,T

U = kBT

[

µ

(
∂ ln Ξ

∂µ

)

V,T

+ T

(
∂ ln Ξ

∂T

)

V,µ

]

.
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Chapter 6

Ideal gases

6.1 Quantum description of an ideal gas

In this chapter we are going to focus on the statistical mechanics of non-interacting
systems, also referred to as ideal gases. We will start with a quantum mechanical
description.

Suppose we have N identical non-interacting particles. The Hamiltonian of such
a system is the sum of N independent contributions1

H(r1, . . . , rN) =
N∑

i=1

h(ri). (6.1)

To describe the state of the system we will first focus on single particle states, which
are the eigenfunctions ψn(r) of h(r):

hψn = ǫ(n)ψn. (6.2)

We can construct system states by attributing a state ψn to each particle. One
possible realisation is

Ψn1,...,nN
(r1, . . . , rN) = ψn1

(r1) × . . .× ψnN
(rN) , (6.3)

which would correspond to an energy

En1,...,nN
= ǫ(n1) + . . .+ ǫ(nN ). (6.4)

1For simplicity, in our notation of the wave function we do not explicitly indicate the spin of the
particles. This implies that each of the ψn(ri) is the product of an ’orbital’ and a spin function. n
therefore includes a spin quantum number. The (anti-) symmetry requirements of the next page
actually apply to these combined ’spin-orbitals’.
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6. IDEAL GASES

So the eigenfunctions of a sum of independent Hamiltonians are products of the
eigenfunctions of the individual Hamiltonians, with eigenvalues equal to the sum of
the individual eigenvalues (like it was in classical mechanics).

The above wave function Ψ is however not yet correct! In an ideal gas each par-
ticle can occupy every position in the box. Consequently, it is relevant to ask about
the probability of a particular configuration of particles, which differs from another
one by the interchange of two particles. Obviously in the case of indistinguishable
particles the probability distribution for both configurations should be the same, i.e.

|Ψ(r1, . . . , ri, . . . , rj, . . . , rN)|2 = |Ψ(r1, . . . , rj, . . . , ri, . . . , rN)|2 . (6.5)

In general condition can be met by stating

Ψ(r1, . . . , ri, . . . , rj, . . . , rN) = eiγΨ(r1, . . . , rj, . . . , ri, . . . , rN),

where γ is some phase. It turns out that in nature only γ = 0 and γ = π are
encountered. Therefore: Ψ must remain the same or it must change sign upon
exchange of two particles. In the first case we call the particles bosons, in the second
case we call them fermions,

bosons : Ψ(r1, . . . , ri, . . . , rj, . . . , rN) = Ψ(r1, . . . , rj, . . . , ri, . . . , rN),

fermions : Ψ(r1, . . . , ri, . . . , rj, . . . , rN) = −Ψ(r1, . . . , rj, . . . , ri, . . . , rN).

Particles with integer spin, like photons, are bosons. Particles with half-integer spin,
like electrons, protons and neutrons, are fermions. Particles composed of a number
of other particles can be either bosons or fermions, depending on their total spin.
Hence, many nuclei are in fact bosons. For example the α-particle (a 4He nucleus)
is a boson. Let us now see how to construct a (anti-)symmetrised product of single
particle states.

Bosons. Suppose we have just two bosons in our system. It is easy to verify
that a properly symmetrised state function, which remains the same upon exchange
of the two particles, is given by

Ψn1,n2
(r1, r2) =

1√
2
{ψn1

(r1)ψn2
(r2) + ψn1

(r2)ψn2
(r1)} . (6.6)

In the general case of N particles the symmetrised state function is

Ψn1,...,nN
=

1√
N !

∑

P

ψn1
(rP1) × . . .× ψnN

(rPN), (6.7)

where the sum over P denotes all possible permutations of the coordinates (N ! in
total).
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Note that permutations of the quantum numbers ni do not result in new states.
We are therefore free to choose the order in which they occur in Eq. (6.7). We may
for instance order them according to

ni ≤ ni+1. (6.8)

This will be useful when we treat quantum gases.
Fermions. Suppose we have just two fermions in our system. Again it is easy

to verify that a properly antisymmetrised state function, which changes sign upon
exchange of the two particles, is given by

Ψn1,n2
(r1, r2) =

1√
2
{ψn1

(r1)ψn2
(r2) − ψn1

(r2)ψn2
(r1)} . (6.9)

In the general case of N particles the antisymmetrised state function is

Ψn1,...,nN
=

1√
N !

∑

P

ǫPψn1
(rP1) × . . .× ψnN

(rPN), (6.10)

where again the sum over P denotes all possible permutations of the coordinates.
The variable ǫP is either +1 or -1,

ǫP = +1 even permutations

−1 odd permutations.

where an even permutation means that an even number of pair exchanges was needed
to establish that permutation, and similarly for odd permutations.

Again permutations of the quantum numbers do not result in new states. What
distinguishes fermions from bosons is that states with two or more quantum numbers
equal don’t exist! (Explain why?) We can therefore order the quantum numbers
according to

ni < ni+1. (6.11)

6.2 Ideal gas partition function: Maxwell-Boltzmann

statistics

The partition function of a system of bosons or fermions is given by, respectively,

QB =
∑

n1,...,nN

B
exp {−βǫ(n1) − . . .− βǫ(nN)} (6.12)

QF =
∑

n1,...,nN

F
exp {−βǫ(n1) − . . .− βǫ(nN)} , (6.13)
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where the superscipts B and F indicate a sum restricted to the boson and fermion
symmetry requirements, respectively. Before solving these partition functions ex-
actly, let us first consider what happens if we can neglect the symmetry restrictions:

∑

n1,...,nN

exp {−βǫ(n1) − . . .− βǫ(nN)} =

[
∑

n

exp {−βǫ(n)}
]N

= qN , (6.14)

where we have defined the single particle partition function q. In this sum every state
with no two quantum numbers equal to each other is counted N ! times. In qN/N !
these are counted like they should be counted both for bosons and for fermions.

At high temperatures, the number of states contributing to Q is extremely high
(Problem 6-1); the great majority of them has all quantum numbers different; there-
fore

QB =
qN

N !

(
1 − CB

)
CB ≪ 1 (6.15)

QF =
qN

N !

(
1 − CF

)
CF ≪ 1, (6.16)

where CB and CF are some very small numbers. The free energy is therefore given
by

AB = −kBT lnQB

= −kBT ln
qN

N !
− kBT ln

(
1 − CB

)
≈ −kBT ln

qN

N !
(6.17)

AF = −kBT lnQF

= −kBT ln
qN

N !
− kBT ln

(
1 − CF

)
≈ −kBT ln

qN

N !
. (6.18)

So at high temperatures the distinction between bosons and fermions becomes irrel-
evant. In this regime the particles are said to obey Maxwell-Boltzmann statistics:

Q =
qN

N !
. (6.19)

6.3 The two-atomic molecular ideal gas

Up to this point we have assumed that the ideal gas particles have no internal

structure. If the particles do have internal structure, the total energy should also
include energy terms representing changes in the internal structure. As an example
we will treat now an ideal gas of two-atomic molecules. The two atoms may be the
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Figure 6.1: Sketch of the effective
(electronically averaged) potential
energy of a two-atomic molecule as
a function of the distance between
the nuclei. For each electronic state
ne there is a different curve; only
the first two are depicted here. The
ground state energy has a mini-
mum ǫe0 at a distance R0. Vibra-
tions around this minimum are ap-
proximated by a (quantum mechan-
ical) harmonic oscillator, with en-
ergy levels indicicated by the dashed
lines.

same, in which case we speak of homonuclear molecules (H2, N2, O2, etc). If the
two atoms are different, we speak of heteronuclear molecules (CO, NO, etc).

As we have seen in section 1.3.6 the energy of a two-atomic molecule consists
of several parts: The electronic, vibrational, rotational, and translational energy.
A sketch is given in Fig. 6.1. The total energy and single particle (or molecular)
partition function may therefore be written as:

ǫ(n) = ǫ(ne, nv, nr, nt) = ǫe(ne) + ǫv(nv) + ǫr(nr) + ǫt(nt) (6.20)

q = qeqvqrqt. (6.21)

We will now treat each contribution in more detail.
For the electrical contribution we have

qe = ωe
0 exp {−βǫe0} , (6.22)

where ωe
0 is the degeneracy of the ground state. Usually there is just one ground

state, ωe
0 = 1. Notable exceptions are O2, for which ωe

0 = 3, and NO, for which
ωe

0 = 2.
The vibrations of the two nuclei are approximately harmonic, so summing over

all possible quantum numbers gives (see Problem 6-2)

ǫv(nv) =

(

nv +
1

2

)

~ω (6.23)

qv =
exp

{
−1

2
β~ω

}

1 − exp {−β~ω} =
exp

{
−1

2
Θv/T

}

1 − exp {−Θv/T} , (6.24)

where we have defined the vibrational temperature Θv ≡ ~ω/kB. Typical Θv range
from 300 K (for H2) to 6000 K.

93



6. IDEAL GASES

The vibrations are usually much faster than the rotations. To a good approxi-
mation, the molecule therefore rotates as a rigid body, with the nuclei fixed at the
equilibrium distance R0. The moment of inertia for rotations around an axis through
the centre of the molecule, perpendicular to the axis connecting the two nuclei, is
therefore

I =
m1m2

m1 +m2

R2
0 = µR2

0, (6.25)

where µ is the reduced mass of the molecule. According to quantum mechanics the
possible energies of a rigid rotator, and the degeneracy, are given by

ǫrJ =
~

2

2I
J(J + 1) (6.26)

ωJ = 2J + 1, (6.27)

where J = 0, 1, 2, . . .. Calculating the rotational partition function qr we now replace
the sum by an integral:

qr =
∑

J

(2J + 1)e−β ~
2

2I
J(J+1)

≈
∫ ∞

0

dJ (2J + 1)e−β ~
2

2I
J(J+1)

=
2I

β~2
=

T

Θr
, (6.28)

where Θr ≡ ~
2/(2IkB) is the rotational temperature. Typical Θr range from 0.05

K (for H2) to 80 K (for I2). Replacing the sum by an integral is only justified if the
distance between consecutive energy levels is much smaller than kBT , that is if

β~
2

2I
(J + 1)(J + 2) − β~

2

2I
J(J + 1) =

β~
2

I
(J + 1) ≪ 1. (6.29)

When applying Eq. (6.28) we have to convince ourselves that the temperature is
high enough to obey Eq. (6.29).

Finally, for the translational partition function we again consider the energy of
a particle in a box of size V = L3. Similarly to Eq. (5.31) (but now qt stands for
three dimensions instead of one) we find

qt = V

(
2πmkBT

h2

)3/2

, (6.30)

where now m = m1 +m2 is the total mass of the molecule.
There is one subtlety related to the nuclear spin. This is where we find that

homonuclear molecules behave differently from heteronuclear molecules. According
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to quantum mechanics, for homonuclear molecules the nuclei must be indistinguish-
able. Specifically, the nuclear spin function either changes sign under exchange of
the two nuclei, or it doesn’t change at all. Even though the nuclear spins do not take
part in the thermal fluctuations, there is a way in which they influence the partition
function: a rotation of 180◦ around an axis through the centre of the molecule, per-
pendicular to the axis connecting the two nuclei, is the same as exchanging the two
nuclei. Therefore, the nuclear spin functions and rotational functions are coupled.
Analysis shows that if the nuclear spin is integer only even J values are allowed,
and if the nuclear spin is half-integer only odd J values are allowed. Therefore, for
homonuclear molecules, Eq. (6.28) should be replaced with

qr =
∑

J=even

(2J + 1)e−β ~
2

2I
J(J+1) ≈ T

2Θr
(6.31)

qr =
∑

J=odd

(2J + 1)e−β ~
2

2I
J(J+1) ≈ T

2Θr
. (6.32)

Note that both even and odd nuclear spin yield the same answer. In general, the
rotational partition function is denoted as T/(σΘr), with σ = 1 for heteronuclear
and σ = 2 for homonuclear two-atomic molecules.

In summary, for an ideal gas of two-atomic molecules, the free energy is given
by A = −kBT lnQ, with Q = qN/N ! and

q = ωe
0 exp {−βǫe0}

exp
{
−1

2
Θv/T

}

1 − exp {−Θv/T}

(
T

σΘr

)

V

(
2πmkBT

h2

)3/2

. (6.33)

In Problem 6-3 you are asked to calculate the entropy and specific heat of an ideal
gas of two-atomic molecules.

6.4 Boson gas

We have seen in section 6.2 that at high temperatures the distinction between
bosons and fermions becomes irrelevant. In that regime the particles obey Maxwell-
Boltzmann statistics. In this and the next section we will analyse the more general
case, also applicable to low temperatures. As it turns out, it is quite difficult to
treat the statistics of bosons or fermions in the canonical ensemble, but much easier
in the grand canonical ensemble. We will show why.

6.4.1 Bose-Einstein statistics

First we consider an ideal gas of N identical bosons. We can select the quantum
numbers such that

ni ≤ ni+1 i = 1, . . . , N (6.34)
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There is an alternative way to label the state of the system, namely by means of
occupation numbers mn, such that

∞∑

n=0

mn = N. (6.35)

The occupation number mn is, in a way, equal to the number of particles in state n.
We need to keep in the back of our minds that these mn particles are, of course, not
a distinct set of particles; quantum mechanics requires that all (identical) particles
are indistinguishable. All particles therefore play an identical role. But often it is
useful to think of the occupation number in this way. For example:

n = 0, 1, 2, 3, 4, 5, 6, . . .

mn = 2, 0, 0, 0, 1, 1, 0, . . .

means that 2 particles are in state n = 0, 1 particle in state n = 4, and 1 particle in
state n = 5, i.e.

n1 = 0, n2 = 0, n3 = 4, n4 = 5.

In terms of occupation numbers, the (canonical) partition function reads

QN =

∞∑

m0=0

∞∑

m1=0

. . .

∞∑

m∞=0
︸ ︷︷ ︸

∑

n mn=N

e−β
∑

n mnǫ(n), (6.36)

where we have labeled Q with a subscript N to make explicit its dependence on
the number of particles N . The condition Eq. (6.35) makes this sum a restricted
sum, which is very hard to evaluate. If we imagine the Bose gas to be coupled to
an external reservoir of identical bose particles at chemical potential µ, the grand
canonical partition function reads

Ξ =

∞∑

N=0

∞∑

m0=0

∞∑

m1=0

. . .

∞∑

m∞=0
︸ ︷︷ ︸

∑

n mn=N

e−β
∑

n mnǫ(n)eβµ
∑

n mn

=

∞∑

m0=0

∞∑

m1=0

. . .

∞∑

m∞=0

e−β
∑

n mn(ǫ(n)−µ)

=

∞∏

n=0

{
∞∑

mn=0

e−βmn(ǫ(n)−µ)

}

=

∞∏

n=0

1

1 − e−β(ǫ(n)−µ)
. (6.37)
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Figure 6.2: Average occupa-
tion number of a Bose gas as
a function of the energy ǫ(n) of
state n. The energy of the low-
est energy state is ǫ(0). The
chemical potential µ must be
lower than this.

In going from the first to the second line we have used the fact that a restricted
sum, when summed over all possible values for the restriction (N), is the same as
an unrestricted sum (see Appendix A for a simple case). This is why this problem
is much simpler to solve in the grand canonical ensemble than in the canonical
ensemble.

Now the thermodynamic potential associated with the grand canonical ensemble
is the function PV (µ, V, T ). It is equal to

PV = kBT ln Ξ

= −kBT
∞∑

n=0

ln
(
1 − e−β(ǫ(n)−µ)

)
. (6.38)

We are now ready to do thermodynamics. For example, because the differential of
PV is

d(PV ) = SdT + PdV +Ndµ, (6.39)

the (average) number of particles, at given chemical potential µ, volume V , and
temperature T , is given by

N =

(
∂PV

∂µ

)

T,V

=
∞∑

n=0

e−β(ǫ(n)−µ)

1 − e−β(ǫ(n)−µ)
=

∞∑

n=0

1

eβ(ǫ(n)−µ) − 1
=

∞∑

n=0

〈mn〉 . (6.40)

In the last line 〈mn〉 is the average occupation number of state n (a proof will be
given in chapter 7). The average occupation number is plotted as a function of ǫ(n)
in Fig. 6.2. Notice the singularity when µ = ǫ(n). We want our mathematics
to be correct, and extract from this physical results. In order for the derivation of
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Eq. (6.37) to be valid we need

∞∑

mn=0

e−βmn(ǫ(n)−µ) <∞ ⇔ µ < ǫ(n) (∀n) (6.41)

1

Ξ
=

∞∏

n=0

(
1 − e−β(ǫ(n)−µ)

)
<∞ ⇔

∑

n

e−β(ǫ(n)−µ) <∞. (6.42)

So we see that the chemical potential µ in an ideal bose gas is necessarily lower than
the lowest energy state ǫ0, and that there are certain requirements on the speed with
which exp(−β(ǫ(n) − µ)) tends to zero as n increases.

6.4.2 Bose-Einstein condensation

An ideal Bose gas has the peculiar property that at a low but finite temperature all
particles tend to pile into the single-particle state of lowest energy. Let us see why
this happens.

Suppose we have a fixed amount of N Bose particles at temperature T in a
volume V . Using the results derived above, we can express N in terms of the
chemical potential µ (as well as V and T ). If the spacing between consecutive
energy levels is small compared to kBT , we can replace the sum Eq. (6.40) with an
integral over the single-particle density of states ρ(ǫ):

N =

∞∑

n=0

〈mn〉 ≈
∫ ∞

0

dǫ ρ(ǫ)
1

eβ(ǫ−µ) − 1
. (6.43)

Here we have shifted the energy states such that the single particle state of lowest
energy corresponds to ǫ = 0. For an ideal particle of spin s (be it a Bose or Fermi
particle), contained in a box of volume V = L3, the single-particle density of states
is given by (see Problem 6-4)

ρ(ǫ) = (2s+ 1)

(
2m

~2

)3/2
V

4π2

√
ǫ, (6.44)

leading to (Problem 6-5)

N =
2s+ 1

4π2

(
2m

β~2

)3/2

V

∫ ∞

0

dx

√
x

e−βµex − 1
. (6.45)

This can in principle be inverted to

µ = µ(N, V, T ). (6.46)
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We see that µ < 0 because otherwise the integrand is singular. Notice that the inte-
gral in Eq. (6.45) becomes larger when −βµ (a positive quantity) becomes smaller.
Notice also that the factor in front of the integral becomes smaller when β becomes
larger. Therefore, if at constant N and V we increase β (i.e. we decrease T ), the
first factor goes down, so the second factor must go up. Therefore −βµ must go
down. We have done this difficult exercise to prove that µ approaches 0 faster than
β−1.

We now find the interesting result that, as we lower the temperature of a Bose
gas, at a certain critical temperature Tc we encounter a situation where βµ = 0.
Below this temperature most of the available particles will start to go into the
lowest accessible quantum state (n = 0). This collapse of Bose particles into a
single quantum state is called Bose-Einstein condensation. It was predicted by
Albert Einstein, by generalising Satyendra Nath Bose’s work on massless photons
to massive atoms.

We can find the critical temperature by first using βµ = 0 and β = βc = 1/(kBTc)
in Eq. (6.45):

N =
2s+ 1

4π2

(
2m

βc~
2

)3/2

V

∫ ∞

0

dx

√
x

ex − 1
(T = Tc) (6.47)

The last integral equals ζ(3
2
)1

2

√
π, where ζ is the Riemann zeta function which at

3/2 is approximately 2.6124. Inverting yields

Tc =
1

kB

2π~
2

m

[
N

V

1

2s+ 1

1

ζ(3
2
)

]2/3

. (6.48)

This is a good estimate for Tc.

Below Tc the sum over states can no longer be replaced by an integral. The
largest error comes from the fact that more and more particles go into the lowest
quantum state n = 0, whereas according to Eq. (6.44) the single particle density of
states ρ(ǫ) equals zero at ǫ = 0. It turns out that the integral approach can still be
used, provided that the number of particles in the ground state is added separately.
Let us call the number of particles in the ground state N0. We can then approximate
the number of particles for T < Tc as

N = N0 +
2s+ 1

4π2

(
2m

β~2

)3/2

V

∫ ∞

0

dx

√
x

ex − 1
(T < Tc) (6.49)

Here we have used that for T < Tc the chemical potential is essentially zero. For
T = Tc the number of particles in the lowest quantum state is still very small, which
is why we were allowed to use Eq. (6.47) to estimate Tc. Again using Eq. (6.47), we
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0 1 2 3 4
T / Tc

0

1

2

CV / NkB

N0 / N

Figure 6.3: The fraction N0/N
of particles in the lowest quantum
state (dashed line) and the specific
heat CV /(NkB) (solid line) of a
Bose gas as a function of temper-
ature. Note the discontinuity in
the derivative of CV at the critical
temperature Tc.

can express the fraction N0/N of particles condensed in the lowest quantum state
(see dashed line in Fig. 6.3) as

N0

N
≈ 1 −

(
T

Tc

)3/2

. (6.50)

The dependence of the specific heat of a Bose gas on temperature is also quite
peculiar. Knowing the occupation number and the density of states, we can find the
total energy of the system:

U(µ, V, T ) =
∞∑

n=0

〈mn〉 ǫ(n) ≈
∫ ∞

0

dǫ ǫρ(ǫ)
1

eβ(ǫ−µ) − 1
. (6.51)

Note that the lowest quantum state need not be included because its energy is set to
zero by definition. The specific heat is the derivative of U to T at constant (N, V ),
whereas we have available U as a function of (µ, V, T ). The chemical potential µ
needs to be determined at each temperature T such that the total number of particles
equals N . In general it is therefore a difficult exercise to calculate the specific heat
from this equation. However, we can easily calculate CV for T < Tc. In that case
µ = 0 and there is no temperature dependence of µ. Using x = βǫ, the energy for
T < Tc can be expressed as

U =
2s+ 1

4π2

(
2m

~2

)3/2

V β−5/2

∫ ∞

0

dx
x3/2

ex − 1
(T < Tc) (6.52)

Differentiating with respect to T gives

CV =
5

2
kB

2s+ 1

4π2

(
2m

β~2

)3/2

V

∫ ∞

0

dx
x3/2

ex − 1
(T < Tc) (6.53)

The last integral equals ζ(5
2
)3

4

√
π, where the Riemann zeta function at 5/2 is ap-

proximately 1.3415. With the use of Eq. (6.47) this may be expressed as

CV =
15

4
NkB

(
T

Tc

)3/2 ζ(5
2
)

ζ(3
2
)
≈ 1.926NkB

(
T

Tc

)3/2

(T < Tc) (6.54)
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More elaborate calculations are needed for T > Tc. The result, to very good ap-
proximation, is:2

CV ≈ 1.496NkB +0.341NkB

(
Tc

T

)3/2

+0.089NkB

(
Tc

T

)3

(T > Tc) (6.55)

Figure 6.3 (solid line) shows the very peculiar shape of CV (T ). Note that the
derivative dCV /dT is discontinuous at T = Tc.

6.5 Fermi gas

6.5.1 Fermi-Dirac statistics

We now consider an ideal gas of N identical fermions. We can select quantum
numbers such that

ni < ni+1. (6.56)

The treatment is similar to the treatment of the Bose gas. We will again turn to a
description in terms of occupation numbers mn. Since for fermions states with two
or more quantum numbers equal do not exist, the occupation number of a state is
either 0 or 1. The (canonical) partition function is therefore given by

QN =
1∑

m0=0

1∑

m1=0

. . .
1∑

m∞=0
︸ ︷︷ ︸

∑

n mn=N

e−β
∑

n mnǫ(n), (6.57)

and the grand canonical partition function by

Ξ =
∞∑

N=0

QNeβµN

=

1∑

m0=0

. . .

1∑

m∞=0

e−β
∑

n(ǫ(n)−µ)mn

=

∞∏

n=0

(
1 + e−β(ǫ(n)−µ)

)
, (6.58)

2Note that this is an approximation, but the accuracy is at least 0.3% over the full range of
temperatures. For example the high temperature limit should be CV = 3/2NkB, whereas the
approximation yields a prefactor 1.496.
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Figure 6.4: Average occupation
number of a Fermi gas as a func-
tion of the energy ǫn = ǫ(n) of
state n. At very low tempera-
tures T → 0, all lower states are
occupied by one particle. The
energy of the highest occupied
state at T = 0 is called the Fermi
energy ǫF .

where again we have used the fact that a restricted sum, when summed over all
possible restriction, is an unrestricted sum. The thermodynamic function PV is
now equal to

PV = kBT
∞∑

n=0

ln
(
1 + e−β(ǫ(n)−µ)

)
. (6.59)

The number of particles, at given chemical potential µ, volume V , and temperature
T , is given by

N =

(
∂PV

∂µ

)

T,V

=

∞∑

n=0

1

eβ(ǫ(n)−µ) + 1
=

∞∑

n=0

〈mn〉 . (6.60)

The average occupation number 〈mn〉 is plotted as a function of ǫ(n) in Fig. 6.4.
Notice that as T → 0, all lower level states become occupied by exactly one particle.
Remember that this is the maximum occupation number allowed for fermions. The
energy of the highest occupied state at T = 0 is also called the Fermi energy ǫF . It
is equal to the chemical potential µ at T = 0 (can you explain why?).

6.5.2 Specific heat of free electrons in a metal

Consider a block of metal. In metals, the highest energy electrons are not “bound”
to any specific nucleus. Rather, they move almost freely in the entire volume V of
the metal, which is why they are called free electrons. We may now ask what is
the contribution of these N free electrons to the specific heat of the metal? In fact,
this is an age old problem, which could not be solved prior to the development of
quantum mechanics. Classically, one would expect CV ≈ 3

2
NkB, at least at high

enough temperature. Experiments on metals, however, show that CV is proportional
to NkBT , i.e. linear in the temperature T .

To show why, consider the free electrons to form an ideal Fermi gas, contained in
the volume V of the block of metal. The single-particle density of states, according
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Figure 6.5: Density of states
ρ(ǫ) and average occupation
number times density of states
ρ(ǫ) 〈m(ǫ)〉 of a Fermi gas. The
integral over the latter gives the
number of particles N . The
width of the transition zone be-
tween the two vertical lines is
approximately 2kBT .

to Eq. (6.44), is given by (remember that the spin of an electron is 1
2
):

ρ(ǫ) =

(
2m

~2

)3/2
V

2π2

√
ǫ. (6.61)

The number of free electrons is related to the Fermi energy ǫF by

N =

∫ ∞

0

dǫ ρ(ǫ)
1

eβ(ǫ−µ) + 1
, (6.62)

where we have put the lowest energy ǫ0 of the free electrons equal to zero. A plot
of the integrand, i.e. the number of particles between energy ǫ and ǫ+ dǫ, is given
in Fig. 6.5. The argument is now as follows. The electrons can only gain energy
if they move into a free state in their energetic neighbourhood. Only a few of the
electrons can do this, namely the ones with an energy near µ. The width of the
transition zone (between the vertical lines in Fig. 6.5) is of order 2kBT , whereas
for a typical metal ǫF/kB ≈ 105 K. Therefore µ ≈ ǫF also at room temperature.
Because the specific heat is proportional to the number of electrons which can move
into a free state, we predict that CV will be linear in T .

Now a more precise calculation. The integral in Eq. (6.62) is particularly easy
at T = 0 K, because all states up to ǫF are occupied by one particle, whereas all
higher energy states are unoccupied:

N =

∫ ǫF

0

dǫ

(
2m

~2

)3/2
V

2π2

√
ǫ =

V

3π2

(
2mǫF

~2

)3/2

. (6.63)

Now suppose we heat the metal from 0 K to a temperature T , assuming the volume
and number of free electrons remain constant. We may then write the increase in
energy of the free electrons, and the number of free electrons as

U(T ) =

∫ ∞

0

dǫ ǫρ(ǫ)
1

eβ(ǫ−µ) + 1
(6.64)

ǫFN = ǫF

∫ ∞

0

dǫ ρ(ǫ)
1

eβ(ǫ−µ) + 1
. (6.65)
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Differentiating Eqs. (6.64) and (6.65) with respect to T yields

CV =

∫ ∞

0

dǫ ǫ ρ(ǫ)
∂

∂T

(
1

eβ(ǫ−µ) + 1

)

(6.66)

0 =

∫ ∞

0

dǫ ǫFρ(ǫ)
∂

∂T

(
1

eβ(ǫ−µ) + 1

)

. (6.67)

Subtracting Eq. (6.67) from Eq. (6.66) we find for the specific heat

CV =

∫ ∞

0

dǫ (ǫ− ǫF )ρ(ǫ)
∂

∂T

(
1

eβ(ǫ−µ) + 1

)

. (6.68)

As we have seen, the ∂/∂T ( ) term is only significant in a small region around ǫ = ǫF .
We may therefore approximate ρ(ǫ) ≈ ρ(ǫF ) in this integral. Furthermore, the chem-
ical potential µ changes only very slowly with temperature T and is approximately
ǫF throughout the entire solid state range of a metal. We therefore write

CV ≈ ρ(ǫF )

∫ ∞

0

dǫ (ǫ− ǫF )

ǫ−ǫF

kBT 2 e
β(ǫ−ǫF )

[eβ(ǫ−ǫF ) + 1]
2

≈ k2
BTρ(ǫF )

∫ ∞

−∞

dx
x2ex

(ex + 1)2

= k2
BTρ(ǫF )

π2

3
. (6.69)

In the second line we have used that ǫF ≫ kBT . Note that in this last derivation we
have made no assumptions about the precise form of ρ(ǫ). We do know the precise
form, namely Eq. (6.61), which may be expressed as

ρ(ǫ) = ρ(ǫF )

(
ǫ

ǫF

)1/2

, (6.70)

allowing us to write (again assuming ǫF ≫ kBT )

N ≈
∫ ǫF

0

ρ(ǫ)dǫ =
2

3
ρ(ǫF )ǫF . (6.71)

Our final result for the (electronic) specific heat of a metal is therefore

CV =
π2

2
NkB

(
T

TF

)

, (6.72)

where TF = ǫF/kB is the Fermi temperature. That this result is linear in the
temperature is entirely due to quantum effects.
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6.6 The classical limit: Maxwell-Boltzmann re-

visited

Let us now show how Maxwell-Boltzmann statistics arise for a Bose gas at high
temperatures. We have argued that, at constant N and V , −βµ increases as the
temperature increases (and µ < ǫ(n) for all n). Therefore at high enough tempera-
ture we have exp {β (ǫ(n) − µ)} ≫ 1. In that case

PV = −kBT
∑

n

ln
(
1 − e−β(ǫ(n)−µ)

)

≈ kBT
∑

n

e−β(ǫ(n)−µ) (6.73)

= kBT eβµq. (6.74)

The chemical potential can be related to the number of particles by writing

N =

(
∂PV

∂µ

)

T,V

= eβµq (6.75)

µ = −kBT ln
( q

N

)

. (6.76)

Note that the above implies PV = NkBT . We can now express the free energy as

A = G− PV = Nµ − PV

= −NkBT ln
( q

N

)

−NkBT = −NkBT ln
(qe

N

)

= −kBT ln

(
qN

N !

)

. (6.77)

This is in exact agreement with Maxwell-Boltzmann statistics Eq. (6.19).
A similar argument holds for the case of a Fermi gas at high temperatures, with

the same outcome.
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Figure 6.6: Example of
a summation over occupa-
tion numbers m0 and m1

with the constraint that
the total number of parti-
cles N = 4. When a fi-
nal summation over N is
made, each combination of
m0 and m1 is encountered
exactly once.

Appendix

In this appendix we will show for a simple case why the summation over N in
Eq. (6.37) effectively removes the restriction that

∑

nmn must be equal to N .
Suppose we have just two states, n = 0 and n = 1, and a total of N = 4 particles.

When performing the sums over de occupation numbers for m0 and m1, we will have
as an added constraint that

∑

nmn = N , i.e. m0+m1 = 4. The occupation numbers
can then be chosen according to the crosses in figure 6.6. Now if we perform a sum
over the total number of particles N , other diagonal rows of crosses will be added
until we have encountered each combination of m0 and m1 exactly once. The same
argument applies to a larger number of states.

Problems

6-1. The classical limit. Calculate nx, ny, nz, for the case nx = ny = nz for a
hydrogen atom in a box of 1 cm3 if the particle has an energy of U = 3

2
kBT and

T = 300 K. What significant fact does this calculation illustrate?

6-2. Vibrational molecular partition function. Give a proof of Eq. (6.24).

6-3. Entropy and specific heat of an ideal gas of two-atomic molecules.
Prove that the entropy and specific heat of an ideal gas of two-atomic molecules are
given by

S

NkB
= ln

[(
2πmkBT

h2

)3/2

e5/2 V

N

]

+ ln

(
T

σΘr
e

)

+
Θv/T

eΘv/T − 1
− ln

(
1 − e−Θv/T

)
+ lnωe

0

CV

NkB
=

5

2
+

(
Θv

T

)2
eΘv/T

(eΘv/T − 1)
2 .
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6-4. Single-particle density of states. Consider a quantum particle of spin s in
a box of volume V = L3. Prove that the single-particle density of states at energy ǫ
is given by Eq. (6.44). (Hint: what is the number of realisations for sz for a particle
of spin s? Use the result of Problem 1-9 for the energy of the particle.)

6-5. Number of particles in a Bose gas at chemical potential µ. Prove
Eq. (6.45) from Eqs. (6.43) and (6.44).

6-6. Molecular adsorption on a surface. Consider a gas in contact with a solid
surface. The molecules of the gas can adsorb on M specific sites on the surface.
All these sites are identical and we assume, for simplicity, that these sites do not
interact with each other. Each site can accommodate at most two molecules from
the gas; each site has an energy that we take as zero when the site is empty, ǫ1 if
the site is singly occupied, and ǫ2 if it is doubly occupied. If we consider the surface
as our system, the total energy of the system is

E =

M∑

i=1

ǫ(ni),

where ni is the number of absorbed molecules at site i, and ǫ(0) = 0, ǫ(1) = ǫ1, and
ǫ(2) = ǫ2. The total number of absorbed molecules can be expressed as

N =

M∑

i=1

ni.

We assume the surface is in equilibrium with the gas, which has a temperature T
and chemical potential µ.

Show that the average number of molecules adsorbed per site is given by

〈N〉
M

=
e−β(ǫ1−µ) + 2e−β(ǫ2−2µ)

1 + e−β(ǫ1−µ) + e−β(ǫ2−2µ)
,

and that the average energy per site is given by

〈E〉
M

=
ǫ1e

−β(ǫ1−µ) + ǫ2e
−β(ǫ2−2µ)

1 + e−β(ǫ1−µ) + e−β(ǫ2−2µ)
.

(Hint: Show that the grand canonical partition function can be written as Ξ = zM ,
with z = 1+exp{−β(ǫ1 −µ)}+exp{−β(ǫ2 −2µ)}. Then use the results of Problem
5-5.)
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6-7. An ideal gas of atoms. In this exercise we will consider an ideal gas of real
atoms. Besides the translational energy associated with point particles, atoms also
have an electronic contribution to the single particle energy. Since these two types
of energy contributions are independent, the single particle partition function of an
ideal gas of atoms factorizes into two parts:

q = qeqt

where qt is the translational partition function of a particle in a box, and qe is given
by

qe =
∑

ne

ωe(ne) exp {−βǫe(ne)}

Here ωe(ne) is the degeneracy of the ne’th electronic energy level. For hydrogen
ωe(0) = 2, for carbon ωe(0) = 9, and for oxygen ωe(0) = 5, ωe(1) = 3 and ωe(2) = 1.
We are allowed to set the ground state energy of all atoms to zero: ǫe(0) ≡ 0.
The other energy levels may then be measured experimentally by analysing the
adsorption spectra of the atoms: photons (light) are adsorbed by the atoms at
frequencies ν, the energies hν of which correspond to the distance between the
different electronic energy levels. As it turns out, for most atoms even the first
level is much higher than the ground state, giving no contribution to the electronic
partition function. Notable exceptions are atomic oxygen and fluor. Oxygen has a
first excitation at 158.5 cm−1 and a second at 226.5 cm−1. The next is at 15867.6
cm−1. Using 1 cm−1 = 1.986 × 10−23 J, we see that the last excitation gives a
contribution only when T ≈ 15000 K.

Calculate the atomic entropy (per mole) of carbon atoms and that of oxygen
atoms at standard temperature (T 0 = 298.15 K) and standard pressure (P 0 =
1.048 × 105 Pa). (You may use that the molar entropy of atomic hydrogen equals
114.71 J/mol/K.) Experimentally: S(C) = 158.10 J/mol/K and S(O) = 161.06
J/mol/K.

6-8. Chemical potential in an ideal gas mixture. Suppose we make an ideal
gas mixture of NA molecules A and NB molecules B. Because the mixture is ideal,
the molecules do not interact, and the canonical partition function may be written
as

Q =
qNA

A

NA!

qNB

B

NB!

a Show that the total free energy A is given by

A = −NAkBT ln

(
qAe

NA

)

−NBkBT ln

(
qBe

NB

)
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Since we have not specified the exact nature of the molecules A and B, we do not
know much about the partition function. However, we do know that the translations
of the molecules lead to the appearance of the volume V in the single particle
partition function. We denote the remaining part of the single particle partition
function by q′. Specifically, for molecule A:

qA =
qA
V
V ≡ q′A(T )V

Note that q′A(T ) only depends on the temperature, not on the volume of the system.

b Show that the chemical potential of A, defined as µA =
(

∂A
∂NA

)

NB,V,T
, may be

written as

µA(P, T ) = µ∗
A(T ) + kBT ln (PxA)

where xA = NA/(NA + NB) is the fraction of A molecules, P = (NA +
NB)kBT/V the pressure, and µ∗

A(T ) a function that only depends on tem-
perature.

Note the µ∗
A(T ) depends on our choice for the unit of pressure. In the literature it

is common practice to express everything in molar quantities and the pressure P in
units of atmosphere, so that µ∗

A(T ) is the chemical potential per mole at temperature
T and standard pressure P 0:

µA(P, T ) = µ∗
A(T ) +RT ln

(
(P/P 0)xA

)
.

6-9. Chemical equilibrium. We consider the following chemical reaction:

CO2 + H2 ⇋ CO + H2O

at a temperature of T = 2000 K and reference temperature P = P 0 = 1 atm. Under
these conditions the reaction takes place entirely in the gas phase, which we may
assume to be an ideal gas mixture.

Denoting the chemical potentials of the components in the mixture by µi (see
end of previous exercise), thermodynamic equilibrium is reached when

∑

i

µiνi = 0

where νi are the stoichiometric coefficients of the reaction (i.e. +1 for CO and H2O,
and -1 for CO2 and H2).
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a Show that the above condition implies that Kp, defined as Kp = Πi(Pxi)
νi,

can be expressed as

Kp = exp

(

−∆µ∗
r(T )

RT

)

where xi = Ni/N is the mole fraction of component i and ∆µ∗
r(T ) =

∑

i µ
∗
i (T )νi

is the change in chemical potential (per mole) of the reaction at temperature T
and standard pressure P 0. Note that for this particular reaction the pressure
dependence of Kp falls out:

Kp =
(PxCO)(PxH2O)

(PxCO2
)(PxH2

)
=
xCOxH2O

xCO2
xH2

b Calculate ∆µ∗
r(2000K) of the reaction using the table given below. Hint: con-

sider Eq. (3.89).

h0 s0 cp
species kJ/mol J/mol/K J/mol/K

CO -110.53 197.54 29.14
H2O -241.82 188.72 33.60
CO2 -393.52 213.69 37.05

H2 0 130.57 29.16

c Suppose we start with 1 mole of CO2 and 1 mole of H2 at T = 2000 K and
standard pressure. Our reaction will take place. How many moles of CO2, H2,
CO, and H2O are there in equilibrium? Hint: suppose α mole of CO2 have
reacted, how many moles of the other components are there?
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Chapter 7

Probabilities and fluctuations

In this chapter we will study probabilities associated with each type of ensemble. We
will encounter the principle of equal a priori probabilities, the ergodic hypothesis,
and study fluctuations of the thermodynamic variables in each of the ensembles.

7.1 Probabilities

7.1.1 Microcanonical (N,V,U)

Suppose we have an isolated system, containing N particles in a constant volume
V . Because the system is isolated, its energy U is in principle a conserved property.
We have discussed in section 2.2 that perfect isolation is never possible, and small
perturbations cause the system to continuously jump between any of the Ω different
states of the same energy. A measurement of a quantity F will therefore be given by
some average over the expectation values of all possible states. We postulate that
this average must be performed with an equal probability for each possible state. In
other words, the probability to encounter the system in state n is1

Pn =

{
1
Ω

if En = U,
0 if En 6= U.

(7.1)

A measurement of a quantity F then yields2

〈F 〉 =
∑

n

PnFn, (7.2)

1Do not confuse the notation of Pn for probability with P for pressure.
2Note that the notation 〈. . .〉 for the ensemble average is similar to that of the quantum me-

chanical expectation value 〈. . .〉 of an observable. Technically we should write

〈〈F 〉〉 =
∑

n

Pn 〈Fn〉 ,
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where Fn is the expectation value of property F in state n. The average in Eq. (7.2) is
called the microcanonical average, to distinguish it from the canonical average which
we will encounter in the next subsection. Eq. (7.1) is the fundamental postulate
of statistical thermodynamics. It is referred to as the principle of equal a priori

probabilities. “A priori” means that the principle refers to the most elementary
property of the system, its quantum mechanical state, about which one cannot
justify any other statement than that all outcomes are equally probable. For all
kinds of derived properties it is of course no longer true that each outcome is equally
probable. An analogy is this: if we shake a box containing 1000 balls, and blindly
take one ball, the probability to take a certain ball is 1/1000, and this probability
is equal for each ball. Now suppose 3/4 of the balls are red and 1/4 are white. The
colour of the ball we take can be either red or white. The probability to take a red
ball is however not 1/2, but 3/4.

Only in an idealised case can the energy be kept exactly constant, in practice
this is impossible. We therefore assume that the energy fluctuates between U and
U + dU . If we say the system is thermodynamically isolated, we mean in practice
that dU is very small relative to U , e.g. dU = 10−10U . For a system containing 1020

particles this would mean dU = 1010(U/N), in other words: no matter how small
the fluctuation at the macroscopic scale, it will still be many orders of magnitude
larger than the energy per particle. Quantum mechanically there are many states
between U and U +dU . In the language of section 2.2, the density of states Ω(U) is
very large. Small perturbations therefore cause the system to jump between different
states for which U ≤ En < U + dU . The principle of equal a priori probabilities is
also applied in this case, leading to

Pn =

{ 1
Ω(U)dU

U ≤ En < U + dU,

0 otherwise.
(7.3)

In the above we have assumed an idealized experiment, in which an average
is taken over all possible states corresponding to the macroscopic thermodynamic
parameters. In other words, we have performed an ensemble average. In a real
experiment a property F is measured by averaging of a certain amount of time T ,

F̄ =
1

T

∫ T

0

dt F (t). (7.4)

Since a finite amount of time is spent in each state, and the number of states between
U and U +dU is so great, one may wonder whether this time average is equal to the
ensemble average Eq. (7.2). Indeed, even though many different states are sampled

where 〈Fn〉 is the quantum mechanical expectation value of F in state n. However, this would
make all our notations needlessly complicated. We stick to the notation of Eq. (7.2), assuming the
reader understands from the context which average is meant.
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during a typical experimental time, the actual number of states visited is still much
less than the number of states between U and U +dU . Despite this we assume that
to a good approximation

F̄ = 〈F 〉 . (7.5)

This is referred to as the ergodicity hypothesis. We can think of the analogy of red
and white balls above. If we have a huge box containing, say, 1020 balls, we only need
to take 104 balls to determine the fraction of red balls with an accuracy of 1%. If
the distribution is not random, but for instance red balls are preferably surrounded
by other red balls, we may need to take more balls, but never it is necessary to take
all balls out of the box. Similarly a time average yields a good approximation of the
ensemble average, and vice versa.

7.1.2 Canonical (N,V,T)

Now consider a system immersed in a thermostat at temperature T . The system
and thermostat combined are enclosed by adiabatic walls. The energy En of the
system is determined by a quantum number n, the energy Eth

m of the thermostat is
determined by a quantum number m. The total energy of the combined system is
then

Etot
n,m = En + Eth

m = U tot. (7.6)

The total number of states of the combined system at total energy U is equal to the
total number of states in the thermostat, summed over all commensurate states of
the system:

Ωtot(U tot) =
∑

n

Ωth(U tot − En). (7.7)

The probability to encounter the system in state n is therefore

Pn =
Ωth(U tot − En)

Ωtot(U tot)
. (7.8)

As we have seen before Ωth has the general form

Ωth(U tot) = Cth(N th, V th)
(
U tot

)αNth

, (7.9)
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where α is a constant of order one. We now rewrite

Ωth(U tot − En) = Cth(N th, V th) × (U tot −En)αNth

= Cth(N th, V th) ×
(
U tot

)αNth

×
(

1 − En

U tot

)αNth

= Ωth(U tot) ×
(

1 − αN th

U tot

En

αN th

)αNth

≈ Ωth(U tot) ×
(

1 − β
En

αN th

)αNth

= Ωth(U tot) × exp {−βEn} . (7.10)

We can therefore write the probability to encounter the system in state n as

Pn =
1

Q
exp {−βEn} , (7.11)

where

Q =
∑

n

exp {−βEn} . (7.12)

The factor exp {−βEn} occurs very often in calculations in the canonical ensemble
and is called the Boltzmann factor.

The average of any quantity F in this ensemble is again

〈F 〉 =
∑

n

PnFn, (7.13)

where Fn is the value of property F in state n. For example the average energy of
the system is

〈E〉 =
∑

n

PnEn

=
1

Q

∑

n

Ene−βEn = − ∂

∂β
lnQ

= −dT

dβ

∂ lnQ

∂T
= kBT

2∂ lnQ

∂T
. (7.14)

We may ask if this is the same as the (classical) thermodynamic energy U . The
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answer is yes, as the following consistency check shows:

U = A+ TS = A− T

(
∂A

∂T

)

N,V

= −kBT lnQ+ T
∂

∂T
kBT lnQ

= kBT
2∂ lnQ

∂T
. (7.15)

So indeed the average value of the energy in the canonical ensemble equals the
thermodynamic energy, 〈E〉 = U .

7.1.3 Grand canonical (µ, V, T)

Now consider an open system in contact with a particle reservoir at chemical po-
tential µ. The combined system contains N tot particles and is thermostatted from
the outside. We can therefore treat the combined system in the canonical ensemble.
The probability to encounter the system in state n and containing N particles is

PN,n =
e−βEN,nQth

Ntot−N
∑

N QNQth
Ntot−N

. (7.16)

This probability is maximal for N ≈ 〈N〉 and quickly becomes much smaller for
values ofN away from 〈N〉. We therefore make a Taylor expansion aroundN = 〈N〉:

Qth
Ntot−N = exp

{
−βAth(N tot −N)

}

≈ exp

{

−β
[

Ath(N tot − 〈N〉) +
∂Ath(N tot −N)

∂N

∣
∣
∣
∣
〈N〉

(N − 〈N〉)
)}

= exp
{
−β
[
Ath(N tot − 〈N〉) − µ(N − 〈N〉)

)}
, (7.17)

where µth = µ as before. We can now write the probability to encounter the system
with N particles and in state n as

PN,n =
1

Ξ
e−βEN,n+βµN , (7.18)

where

Ξ =
∑

N

QNeβµN . (7.19)
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Averages are expressed as sums over PN,n times the quantity of interest. For exam-
ple, the average number of particles and average energy are given by

〈N〉 =
∑

N,n

PN,nN =
1

Ξ

∑

N

NQNeβµN (7.20)

= kBT
∂ ln Ξ

∂µ
(7.21)

〈E〉 =
∑

N,n

PN,nEN,n = −∂ ln Ξ

∂β
+ µ 〈N〉 . (7.22)

Again we can make a consistency check to see if this equals the thermodynamic en-
ergy U : The differential of the characteristic thermodynamic function PV associated
with Ξ(µ, V, T ) is

d(PV ) = SdT + PdV + 〈N〉 dµ. (7.23)

Therefore

〈N〉 =
∂PV

∂µ
= kBT

∂ ln Ξ

∂µ
(7.24)

U = G + TS − PV

= 〈N〉µ+ T
∂PV

∂T
− PV

= 〈N〉µ+ T
∂kBT ln Ξ

∂T
− kBT ln Ξ (7.25)

= 〈N〉µ+ kBT
2∂ ln Ξ

∂T
. (7.26)

7.2 Average occupation numbers

In section 6.4 we introduced the concept of occupation number mn to count the
number of particles in an ideal gas that reside in a certain state n.

We would now like to know how many particles, on average, are in this state n.
In other words, we would like to calculate the average occupation number 〈mn〉. It
is obvious that in an ideal gas 〈mn〉 /N is the probability to find a certain particle
in state n. If we treat that particle as our system, and the other particles as the
thermostat, we then suspect that

〈mn〉
N

=
1

q
exp {−βǫ(n)} , (7.27)

where q =
∑

n exp {−βǫ(n)}. That this is indeed the case can be shown as follows.
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We first assume the particles are distinguishable. The occupation number then
may be written as

mn = δn1,n + δn2,n + . . .+ δnN ,n =

N∑

i=1

δni,n. (7.28)

Here δn,m is the Kronecker delta, which equals 1 if n = m and 0 otherwise. In
Eq. (7.28) we check each particle for ni = n, and increase mn by one if this is the
case. The average of mn then is

〈mn〉 =
∞∑

n1=0

. . .
∞∑

nN=0

mnPn1,...,nN

=
1

Q

∞∑

n1=0

. . .

∞∑

nN=0

N∑

i=1

δni,n exp {−βǫ(n1) − . . .− βǫ(nN)}

= N
1

Q

∞∑

n1=0

. . .

∞∑

nN=0

δn1,n exp {−βǫ(n1) − . . .− βǫ(nN )}

= N
1

qN

∞∑

n1=0

δn1,n exp {−βǫ(n1)} qN−1

= N
1

q
exp {−βǫ(n)} . (7.29)

So we see that Eq. (7.27) is true for distinguishable particles. If the temperature is
high enough, the same result applies to indistinguishable particles. You are asked
to prove this in Problem 7-1.

At low temperatures quantum mechanical effects become more important and
Eq. (7.27) is no longer valid. In Problem 7-2 you are asked to calculate the average
occupation number 〈mj〉 of a state j in a Bose gas and a Fermi gas along a different
route, namely in the grand canonical ensemble:

〈mj〉 =
1

eβ(ǫ(j)−µ) ∓ 1
, (7.30)

where the minus sign applies to a Bose gas and the plus sign to a Fermi gas. We
have already used this result in section 6.4.

It is important to realise that the above results are not restricted to the case of
an ideal gas of structureless particles. More generally, the same arguments apply
if the Hamiltonian of a system consists of several independent parts. Treating the
system quantum mechanically, this means that the wave function can be written as a
product (or rather a sum of products) of partial wave functions and the total energy
as a sum of partial energies, each associated with their own quantum numbers ni.
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The average occupation number of a certain quantum state n, then again is given
by Eq. (7.27).

For example, in an ideal gas of two-atomic molecules the electronic, vibrational,
rotational, and translational contributions to the energy are to a good approximation
decoupled, see Eq. (6.20). The probability to find a certain molecule in a vibrational
state nv [see Eqs. (6.23) and (6.24)] is therefore

〈mnv〉
N

=
1

qv
exp {−βǫv(nv)} . (7.31)

7.3 Fluctuations

Until now we have only studied averages. But in the canonical ensemble the energy
E fluctuates, and in the grand canonical ensemble both E and N fluctuate. This can
only be useful if the fluctuations are small. We will now show that, quite generally,
the magnitude of the fluctuations relative to the average scale as 1/

√
N . So indeed

the fluctuations become arbitrarily small as the system size becomes macroscopically
large.

In the canonical ensemble (N, V, T ) are the fixed variables. The energy E, how-
ever, can fluctuate. The density of states Ω is a strongly growing function with
energy, and the probability to encounter a state of a certain energy decreases ex-
ponentially with energy like exp(−βE). Combined, we can define the probability
P (E)dE to encounter the system’s energy in the interval [E,E+dE]. According to
Eqs. (7.11) and (7.12) the energy distribution P (E) is given by

P (E) =
Ω(E) exp(−βE)

Q
(7.32)

Q =

∫

dE Ω(E) exp(−βE). (7.33)

P (E) is sharply peaked around some average 〈E〉 with a standard deviation σE , see
Fig. 7.1. The latter is defined as

σE =
√
〈
(E − 〈E〉)2〉. (7.34)

A little manipulation yields

σ2
E =

〈
(E − 〈E〉)2〉 =

〈
E2 − 2 〈E〉E + 〈E〉2

〉

=
〈
E2
〉
− 〈E〉2 . (7.35)
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Figure 7.1: The density of states Ω is
a strongly growing function with energy.
In the canonical ensemble, the probabil-
ity to encounter a state of a certain en-
ergy decreases exponentially with energy
like exp(−βE). Combined, the probabil-
ity P (E) to encounter a certain energy is
sharply peaked around some average 〈E〉
with a standard deviation σE.

We can work out the average of E and E2 as follows:

〈E〉 =
1

Q

∑

n

Ene−βEn = −∂ lnQ

∂β
, (7.36)

〈
E2
〉

=
1

Q

∑

n

E2
ne−βEn , (7.37)

∂2 lnQ

∂β2
= − ∂

∂β

1

Q

∑

n

Ene−βEn

= − 1

Q2

(
∑

n

Ene−βEn

)2

+
1

Q

∑

n

E2
ne−βEn

=
〈
E2
〉
− 〈E〉2 . (7.38)

The magnitude of the energy fluctuations is therefore related to the specific heat of
the system:

σ2
E =

∂2 lnQ

∂β2
= −∂U

∂β
= kBT

2∂U

∂T
= kBT

2CV . (7.39)

We can now make some estimates for the fluctuations. Usually, the energy of a
system may be approximated as U ≈ αkBTN , with α some constant of order one.
Hence CV ≈ αkBN . The relative magnitude of the energy fluctuations is therefore

σE

U
≈

√
αN

αN
=

1√
αN

. (7.40)

So, even though the absolute magnitude of the fluctuations goes up with
√
N , be-

cause the average increases with N the relative magnitude goes down with 1/
√
N .

In Problem 7-3 you are asked to show that the fluctuations in the number of
particles in a grand canonical system grow as

√
N . So also the relative fluctuations

in particle number scale as 1/
√
N . In Problem 7-4 you will use the grand canonical

ensemble to show that the distribution of particle numbers in an ideal gas is given
by the so-called Poisson distribution.
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Problems

7-1. Average occupation number for indistinguishable particles. Show that
Eq. (7.27) is also valid for indistinguishable particles at high temperature. (Hint:
Follow the argument of Eq. (7.29). Use the fact that we may treat the particles as
distinguishable, and divide by N ! to correct for the indistinguishability of all states
with no two quantum numbers equal. All other states can be neglected at high
temperatures, see section 6.2.)

7-2. Occupation numbers of a Bose and Fermi gas. Show that for given
chemical potential µ, volume V , and temperature T , the average occupation number
of state j in a Bose or Fermi gas is given by

〈mj〉B/F =
1

eβ(ǫ(j)−µ) ∓ 1
,

where the minus sign applies to a Bose gas and the plus sign to a Fermi gas. (Hint:
Write 〈mj〉 as a partial derivative of ln Ξ, where Ξ is the grand-canonical partition
function.)

7-3. Particle number fluctuations in the grand canonical ensemble.
(a) Show that in the grand canonical ensemble the particle number fluctuations,

defined as σN =
√

〈N2〉 − 〈N〉2 may also be expressed as

σ2
N = kBT

(
∂ 〈N〉
∂µ

)

V,T

.

(b) Show that

σ2
N =

NkBT

v
κT ,

where v = V/N and κT is the isothermal compressibility defined as

κT ≡ − 1

V

(
∂V

∂P

)

T,N

= −1

v

(
∂v

∂P

)

T

.

(Hint: Use the fact that V may be written as a function of N , µ, and T . Then
derive

(
∂N

∂µ

)

T,V

= −
(
∂N

∂V

)

µ,T

(
∂µ

∂V

)−1

N,T

= −N
v

(
∂µ

∂v

)−1

N,T

.
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Rewrite (∂µ/∂v), using the Gibbs-Duhem relation in the form dµ = −sdT + vdP ,
where s = S/N .)
(c) Show that for an ideal gas

σN

N
=

1√
N
.

7-4. The Poisson distribution. Suppose we have an ideal gas of N tot particles in
a volume V tot. We now focus on a small subvolume V , where V ≪ V tot, and count
the number of particles for different placements of this subvolume. On average we
would expect to count 〈N〉 = N totV/V tot particles. Show that the probability to
find N particles is given by the Poisson distribution

Prob(N) = 〈N〉N e−〈N〉

N !
.

(Hint: Use the grand canonical ensemble and Eq. (6.75), realising that the thermo-
dynamic N is now 〈N〉, i.e. 〈N〉 = eβµq.)

7-5. Unifying expression for the entropy. In general, in any ensemble, the
entropy is given by

S = −kB

∑

n

Pn lnPn,

where Pn is the probability to encounter the system in state n in that ensemble.
Show that this expression is indeed correct for the microcanonical and canonical
ensembles.
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