STATISTICAL MECHANICS OF LIQUIDS

Johan T. Padding

Institut de la Matière Condensée et des Nanosciences
Université catholique de Louvain
Belgium
Contents

1 Structure in liquids and gases
 1.1 Probability density ... 5
 1.2 Pair interactions of spherical molecules 5
 1.3 The radial distribution function 7
 1.3.1 Definition .. 7
 1.3.2 Statistical formulas for \(g(r) \) 8
 1.3.3 Relation between the radial distribution function, energy, compressibility and pressure 9
 1.4 Scattering and the structure factor 12
 Problems ... 14

2 Time dependent properties of liquids
 2.1 Time correlation functions 15
 2.2 Self-diffusion and the velocity autocorrelation function 16
 2.3 Onsager’s regression hypothesis 18
 2.4 Collective diffusion .. 18
 2.4.1 Decay of macroscopic density fluctuations 18
 2.4.2 Microscopic equation for \(D(k) \) 19
 2.5 Shear viscosity .. 20
 2.5.1 Macroscopic hydrodynamics 20
 2.5.2 Microscopic equation for \(\eta \) 22
 Problems ... 24

3 Brownian motion
 3.1 Friction and random forces on colloids 25
 3.2 Smoluchowski and Langevin equations 27
 Problems ... 28

4 The dynamics of unentangled polymeric liquids 29
 4.1 Equilibrium properties of polymers 29
 4.1.1 Global properties 29
 4.1.2 The central limit theorem and polymer elasticity 30
 4.1.3 The Gaussian chain 31
 4.2 Rouse dynamics of a polymer 32
 4.2.1 From statics to dynamics 32
 4.2.2 Normal mode analysis 32
4.2.3 Rouse relaxation times and amplitudes ... 34
4.2.4 Correlation of the end-to-end vector .. 36
4.2.5 Segmental motion .. 36
4.2.6 Polymer stress and viscosity ... 38
Problems .. 39

Index ... 40
Chapter 1

Structure in liquids and gases

1.1 Probability density

Consider a closed box of volume V at temperature T filled with a fluid (liquid or gas) consisting of a large number N of identical molecules. For our purposes we may assume each molecule to be a rigid object with a given position and orientation. According to classical statistical mechanics, these positions and orientations are not completely random. Rather, at not too low temperature T, the probability density for encountering a certain configuration of $3N$ position and $3N$ orientation coordinates, in shorthand denoted by R^{6N}, is given by the Boltzmann distribution function:

$$P(R^{6N}) = \frac{1}{Z} \exp \left(-\frac{\Phi(R^{6N})}{k_B T} \right),$$

(1.1)

where $\Phi(R^{6N})$ is the total potential energy of the configuration, $k_B = 1.38065 \times 10^{-23}$ J/K = 8.617×10^{-5} eV/K is Boltzmann’s constant, and Z is a normalisation constant, referred to as the configuration integral.

The positions and orientations are not completely random because the total potential energy Φ contains terms which depend on the relative positions and orientations of two or more molecules. The details of such molecular interactions determine the precise structural and dynamical properties of a fluid.

1.2 Pair interactions of spherical molecules

To focus on the essentials we will treat the simplest case, namely that of neutral spherical atoms.\(^2\) Suppose we have just two atoms, fixed with their nuclei at positions r_1 and r_2, as in Fig. 1.1. We can write the total ground state energy of the

\(^1\)At very low temperatures the discreteness of the energy levels becomes apparent. In that case the classical view needs to be replaced by a quantum mechanical one and other distribution statistics apply, like Bose-Einstein statistics for ideal bosons and Fermi-Dirac statistics for ideal fermions.

\(^2\)Noble gases such as argon and krypton are excellent examples of neutral spherical atoms. Additionally, we may treat nearly spherical molecules, such as methane, in a similar way. For “atom” one should then read ”spherical molecule”.

5
1. STRUCTURE IN LIQUIDS AND GASES

Figure 1.1: Pictorial representation of the interaction between two neutral spherical atoms. The nuclei (+) are much heavier than the electrons (-). In the Born-Oppenheimer approximation, the nuclei move in effective (electronically averaged) potentials. Nuclear translation, rotations and vibrations can therefore be treated by using classical mechanics.

Figure 1.2: The total interatomic interaction between two neutral spherical atoms is well described by the Lennard-Jones formula, Eq. (1.4). At large distances the van der Waals attraction is dominant. At short distances the atoms repel each other because of the Pauli exclusion principle. The diameter of the atom may be defined as the distance \(\sigma \) where these two interactions exactly cancel out.

The energy of two atoms as

\[
e_0(r_1, r_2) = e_0(r_1) + e_0(r_2) + \varphi(r_1, r_2).
\]

(1.2)

Here \(e_0(r_1) \) is the ground state energy of atom 1 in the absence of atom 2, and similarly for \(e_0(r_2) \). So the term \(\varphi(r_1, r_2) \) is the correction to the sum of two unperturbed ground state energies of the atoms. This term is also called the interatomic interaction or interatomic potential. Because of the rotational symmetry of the atoms, the interatomic potential only depends on the distance \(r_{12} = |r_1 - r_2| \) between the two atoms, i.e.

\[
\varphi(r_1, r_2) = \varphi(r_{12}).
\]

(1.3)

It is also clear that because of its definition \(\varphi(\infty) = 0 \). At finite distances, the electrons in one atom will feel the electrons in the other atom. A classical picture would be the following: the charge distribution in an atom is not constant, but fluctuates in time around its average. Consequently, the atom has a fluctuating dipole moment which is zero on average. The instantaneous dipoles in the atoms, however, influence each other in a way which makes each dipole orient a little in the field of the other. This leads to the so-called van der Waals attraction between two neutral atoms. The van der Waals attraction becomes stronger as the atoms get closer to one another. At a certain point, however, the atoms will repel each other because of the Pauli exclusion principle. The total interatomic interaction as a function of distance is well described by the Lennard-Jones formula (see Fig. 1.2):

\[
\varphi(r) = 4\epsilon\left\{\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6\right\}.
\]

(1.4)
The parameter ϵ is the depth of the interaction well, and σ is the diameter of the atom. The values of ϵ and σ are characteristic for each atomic species. For example for argon $\epsilon/k_B = 117.7$ K and $\sigma = 0.3504$ nm, for krypton $\epsilon/k_B = 164.0$ K and $\sigma = 0.3827$ nm, and for methane $\epsilon/k_B = 148.9$ K and $\sigma = 0.3783$ nm. Note that at room temperature the magnitudes of ϵ are of the same order as the thermal energy k_BT. This is important for fluid behaviour: the intermolecular interactions are weak enough to allow the structure to change dynamically under the influence of thermal fluctuations. This is hardly allowed in a solid.

When dealing with more than two spherical molecules, it is often assumed that the total potential energy may be approximated as a sum of pair interactions (in practice this is often a reasonable assumption):

$$\Phi(r_1, \ldots, r_N) = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \varphi(r_{ij}).$$

(1.5)

The double sum is constructed such that each pair interaction is counted only once.

1.3 The radial distribution function

The interactions between the molecules in a liquid or gas cause correlations in their positions. The aim of almost all modern theories of liquids is to calculate the radial distribution function by means of statistical thermodynamical reasoning. Alternatively, the radial distribution function can be measured directly in computer simulations. We will discuss its use in calculating the energy, compressibility and pressure of a fluid, with a particular application to a hard sphere fluid.

1.3.1 Definition

Imaging we have placed ourselves on a certain molecule in a liquid or gas (Fig. 1.3). Now let us count the number of molecules in a spherical shell of thickness dr at a distance r, i.e. we count the number of molecules within a distance between r and $r + dr$. If r is very large the measured number of molecules will be equal to the volume of the spherical shell times the number density $\rho = N/V$, so equal to $4\pi r^2 dr N/V$. At distances smaller than the diameter of the molecules we will find no molecules at all. We now define the radial distribution function $g(r)$ by equating the number of molecules in the spherical shell of thickness dr at a distance r to

$$4\pi r^2 \frac{N}{V} g(r) dr.$$

(1.6)

According to our remarks above, $g(\infty) = 1$ and $g(0) = 0$. A typical $g(r)$ is given in Fig. (1.3). We see that $g(r) = 0$ when r is smaller than the molecular diameter σ. The first peak is caused by the attractive part of the potential; at distances where the potential has its minimum there are more particles than average. Consequently at distances less than σ further away there are less particles than average.
1. STRUCTURE IN LIQUIDS AND GASES

1.3.2 Statistical formulas for $g(r)$

Integrating the probability density for a configuration of N spherical particles, cf. Eq. (1.1), over the coordinates of all particles except the first two, we find

$$P_{12}(\mathbf{r}_1, \mathbf{r}_2) = \frac{1}{Z} \int d^3r_3 \cdots \int d^3r_N \exp \left(-\frac{\Phi(r_3N)}{k_B T} \right),$$

(1.7)

where $P_{12}(\mathbf{r}_1, \mathbf{r}_2)$ is the probability density to have particle 1 at \mathbf{r}_1 and particle 2 at \mathbf{r}_2. For convenience of notation we write

$$P_{12}(\mathbf{r}, \mathbf{r}') = \frac{1}{Z} \int d^3r_3 \cdots \int d^3r_N \exp \left(-\frac{\Phi(r_3N)}{k_B T} \right) \bigg|_{\mathbf{r}_1=\mathbf{r}, \mathbf{r}_2=\mathbf{r}'}.$$

(1.8)

Because all particles are equal, this is equal to the probability density $P_{ij}(\mathbf{r}, \mathbf{r}')$ of having particle 1 at \mathbf{r} and particle j at \mathbf{r}'. The probability density of having particle 1 at \mathbf{r} and any other particle at \mathbf{r}' equals

$$\sum_{j \neq 1} P_{ij}(\mathbf{r}, \mathbf{r}') = (N-1)P_{12}(\mathbf{r}, \mathbf{r}')$$

(1.9)

$$\frac{1}{V} \rho g(|\mathbf{r} - \mathbf{r}'|) = (N-1)P_{12}(\mathbf{r}, \mathbf{r}')$$

(1.10)

This is equal to the probability density of having particle 1 at \mathbf{r}, which is simply $1/V$, times the conditional density at \mathbf{r}', which is $\rho g(|\mathbf{r} - \mathbf{r}'|)$. Multiplying by N we get

$$\rho^2 g(|\mathbf{r} - \mathbf{r}'|) = N(N-1)P_{12}(\mathbf{r}, \mathbf{r}').$$

(1.11)

We will need this expression in the next subsection.
1.3.3 Relation between the radial distribution function, energy, compressibility and pressure

Once we know $g(r)$, we can derive all non-entropic thermodynamic properties.

Energy

The simplest is the energy:

$$U = U^{\text{int}} + \frac{3}{2} N k_B T + \frac{1}{2} N \frac{N}{V} \int_0^\infty dr 4\pi r^2 g(r) \varphi(r). \quad (1.12)$$

The first term originates from the internal energies of the molecules, the second from the translations, and the third from the interactions. The average total potential energy equals $\frac{1}{2} N$ times the average interaction of one particular molecule with all others; the factor $\frac{1}{2}$ serves to avoid double counting. The contribution of all particles in a spherical shell of thickness dr at a distance r to the average interaction of one particular particle with all others is $4\pi r^2 dr (N/V) g(r) \varphi(r)$. Integration finally yields Eq. (1.12).

Compressibility

The isothermal compressibility κ_T is defined as:

$$\kappa_T \equiv -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_{T,N} \quad (1.13)$$

From thermodynamics it is known that κ_T can be linked to spontaneous fluctuations in the number of particles in an open volume V, see Fig. 1.4:

$$\langle N \rangle \rho k_B T \kappa_T = \langle (N - \langle N \rangle)^2 \rangle = \langle N^2 \rangle - \langle N \rangle^2, \quad (1.14)$$

where the pointy brackets indicate a long time average or an average over many independent configurations commensurate with the thermodynamic conditions (in this case constant temperature T and volume V). From Eq. (1.11) we obtain (where $r_{12} = |\mathbf{r}_1 - \mathbf{r}_2|$):

$$\int_V d^3r_1 \int_V d^3r_2 \rho^2 g(r_{12}) = \langle N(N-1) \rangle = \langle N^2 \rangle - \langle N \rangle. \quad (1.15)$$
We can use this to link the compressibility to the radial distribution function:

\[
\langle N \rangle \rho k_B T \kappa_T = \rho \int_V d^3r_1 \rho \int_V d^3r_2 g(r_{12}) + \langle N \rangle - \rho \int_V d^3r_1 \int_{\mathbb{R}^3} d^3r_2 \\
= \rho \int_V d^3r_1 \rho \int_V d^3r_2 (g(r_{12}) - 1) + \langle N \rangle \\
= \rho \int_V d^3r_1 \rho \int_{\mathbb{R}^3} d^3r (g(r) - 1) + \langle N \rangle
\]

(1.16)

Dividing by \(\langle N \rangle \) we find

\[
\rho k_B T \kappa_T = 1 + \rho \int_{\mathbb{R}^3} d^3r (g(r) - 1).
\]

(1.17)

This so-called compressibility equation shows that the compressibility of a fluid is intimately connected to the radial distribution function of its constituent molecules.

Pressure

We will now consider the pressure of a fluid. If the density of the fluid is not too high, correlations between three or more particles may be ignored, in which case Eq. (1.1) tells us that the radial distribution function is given by

\[
g(r) \approx \exp \{-\beta \varphi(r)\},
\]

(1.18)

where \(\varphi(r) \) is the pair interaction potential. Also for not too high densities, the pressure of a fluid is to a good approximation given by the first two terms in the virial equation

\[
P V = N k_B T \left(1 + B_2(T) \frac{N}{V}\right),
\]

(1.19)

where \(B_2(T) \) is called the second virial coefficient. Our goal now is to link \(B_2(T) \) to the radial distribution function \(g(r) \) or pair interaction \(\varphi(r) \). This may be achieved by differentiating the virial equation to \(V \):

\[
\left(\frac{\partial P}{\partial V}\right)_{N,T} V + P = -N k_B T B_2(T) \frac{N}{V^2} \\
-\frac{1}{\kappa_T} + \frac{N k_B T}{V} \left(1 + B_2(T) \frac{N}{V}\right) = -N k_B T B_2(T) \frac{N}{V^2}
\]

\[
\rho k_B T \kappa_T = 1 - 2 B_2(T) \frac{N}{V}.
\]

(1.20)

Comparing the two expressions for the compressibility, Eqs. (1.17) and (1.20), we can write the second virial coefficient as a three-dimensional integral over the pair interaction \(\varphi(r) \):

\[
B_2(T) = -\frac{1}{2} \int_{\mathbb{R}^3} d^3r (e^{-\beta \varphi(r)} - 1).
\]

(1.21)

\(^3\)In principle the virial equation also contains higher order terms in \(N/V \) with corresponding third, fourth, etc, virial coefficients. These become important at higher densities than considered here.
The above equation is important because it allows us to calculate the pressure of a fluid knowing only the pair interaction \(\varphi(r) \) between its constituent molecules. In the next section we will apply this to a hard sphere fluid.

1.3.4 The hard sphere fluid

In many theories of liquids the hard sphere fluid is used as a reference system, to which interparticle attractions are added as a perturbation. It is therefore useful to study the radial distribution function, second virial coefficient and pressure of a hard sphere fluid.

The pair interaction in a hard sphere fluid is given by

\[
\varphi(r) = \begin{cases}
\infty & \text{for } r \leq \sigma \\
0 & \text{for } r > \sigma
\end{cases}
\]

(1.22)

At very low densities the radial distribution function and second virial coefficient are therefore given by

\[
g(r) \approx \begin{cases}
0 & \text{for } r \leq \sigma \\
1 & \text{for } r > \sigma
\end{cases}
\]

(1.23)

\[
B_2 = -\frac{1}{2} \int d^3r \left(e^{-\beta \varphi(r)} - 1 \right) = 2\pi \int_0^\sigma \! dr r^2 = \frac{2}{3} \pi \sigma^3.
\]

(1.24)

According to Eq. (1.19), and using \(\eta = \frac{1}{6} \pi \rho \sigma^3 \) for the volume fraction of spheres, the pressure of a hard sphere fluid can be expressed as:

\[
P = \rho k_B T \left(1 + 4\eta \right).
\]

(1.25)

The above expressions are valid for not-too-high densities. At higher densities the probability to find another hard sphere in (near-)contact with a given hard sphere is higher than 1, and the pressure is higher than predicted by the second virial coefficient alone. Using a computer one has calculated that the pressure for more general densities is given by:

\[
\frac{P}{\rho k_B T} = 1 + 4\eta + 10\eta^2 + 18.365\eta^3 + 28.24\eta^4 + 39.5\eta^5 + 56.6\eta^6 + \ldots
\]

(1.26)

This is approximately

\[
\frac{P}{\rho k_B T} = 1 + 4\eta + 10\eta^2 + 18\eta^3 + 28\eta^4 + 40\eta^5 + 54\eta^6 + \ldots
\]

(1.27)

Extrapolating and summing we find

\[
\frac{P}{\rho k_B T} = 1 + \sum_{n=1}^{\infty} (n^2 + 3n)\eta^n = \frac{1 + \eta + \eta^2 - \eta^3}{(1 - \eta)^3}.
\]

(1.28)

This is called Carnahan and Starling’s equation for the pressure of a hard sphere fluid. Monte Carlo simulations of hard sphere fluids have shown that Eq. (1.28) is nearly exact at all possible volume fractions.
1. STRUCTURE IN LIQUIDS AND GASES

![An incoming wave with wave vector \(\mathbf{k}_{\text{in}} \) is scattered and analysed in the direction \(\mathbf{k}_{\text{out}} \), with \(|\mathbf{k}_{\text{in}}| = |\mathbf{k}_{\text{out}}| \) for elastic scattering. The scattered intensity depends on density fluctuations inside the fluid.](image)

1.4 Scattering and the structure factor

In the previous section we have linked the compressibility of a fluid to spontaneous fluctuations in the number of particles in a large volume. More generally, density fluctuations in a fluid can be described by means of their Fourier components:

\[
\rho(r) = \rho + \frac{1}{(2\pi)^3} \int d^3k \ \hat{\rho}(k) \exp \{-i\mathbf{k} \cdot \mathbf{r}\},
\]

(1.29)

\[
\hat{\rho}(k) = \int d^3r \ \{\rho(r) - \rho\} \exp \{i\mathbf{k} \cdot \mathbf{r}\}.
\]

(1.30)

The microscopic variable corresponding to a density Fourier component is

\[
\hat{\rho}(k) = \int d^3r \ \left\{ \sum_{j=1}^{N} \delta(\mathbf{r} - \mathbf{r}_j) - \rho \right\} \exp \{i\mathbf{k} \cdot \mathbf{r}\},
\]

(1.31)

where \(\delta(\mathbf{r}) = \delta(x)\delta(y)\delta(z) \) is the three-dimensional Dirac delta-function. This may be rewritten as

\[
\hat{\rho}(k) = \sum_{j=1}^{N} \exp \{i\mathbf{k} \cdot \mathbf{r}_j\} - \rho \int d^3r \exp \{i\mathbf{k} \cdot \mathbf{r}\}
\]

\[
= \sum_{j=1}^{N} \exp \{i\mathbf{k} \cdot \mathbf{r}_j\} - (2\pi)^3\rho\delta(k).
\]

(1.32)

Density fluctuations in a fluid can be measured experimentally by means of scattering of light, neutrons, or X-rays (depending on the scale of interest), see Fig. 1.5. The scattered intensity also depends on details such as wave polarization and scattering strength or form factor, but generally scattering experiments measure correlation functions of Fourier components of the density. The correlation function of \(\hat{\rho}(k) \) with its complex conjugate \(\hat{\rho}^*(k) = \hat{\rho}(-k) \), i.e. the mean square of the density fluctuation with wave vector \(\mathbf{k} \), is a real function of the wavevector, called the structure factor \(S(k) \):

\[
S(k) \equiv \frac{1}{N} \langle \hat{\rho}(k)\hat{\rho}^*(k) \rangle.
\]

(1.33)

\(^4\)In order to avoid overly dressed symbols, we use the same symbol for the macroscopic quantity and the microscopic variable. In general a microscopic variable \(A^{\text{micr}} \) is an expression given explicitly in terms of positions and/or velocities of the particles, which after ensemble averaging yields the corresponding macroscopic quantity \(A \), i.e. \(\langle A^{\text{micr}} \rangle = A \). For example the microscopic density at \(\mathbf{r} \) is given by \(\rho^{\text{micr}}(\mathbf{r}) = \sum_{j} \delta(\mathbf{r} - \mathbf{r}_j) \), and the macroscopic density by \(\rho(\mathbf{r}) = \langle \rho^{\text{micr}}(\mathbf{r}) \rangle \).
The division by N leads to a quantity which for large enough systems is independent of system size (that is to say, the mean square density fluctuations grow linearly with system size). The structure factor gives a lot of information about the structure of a fluid. It is essentially a Fourier transform of the radial distribution function, as can be shown as follows:

$$S(k) = \frac{1}{N} \left\langle \sum_{j=1}^{N} \sum_{k=1}^{N} \exp \{i k \cdot (r_j - r_k)\} \right\rangle - \frac{\rho^2}{N} \int d^3r \int d^3r' \exp \{i k \cdot (r - r')\}$$

$$= 1 + \frac{1}{N} \left\langle \sum_{j=1}^{N} \sum_{k \neq j}^{N} \exp \{i k \cdot (r_j - r_k)\} \right\rangle - \rho \int d^3r \exp \{i k \cdot r\}$$

$$= 1 + \rho \int d^3r [g(r) - 1] \exp \{i k \cdot r\}.$$

Comparison with Eq. (1.17) shows, perhaps surprisingly, that the compressibility of a fluid can be obtained not only by compressing the fluid and measuring the pressure, but also by performing a scattering experiment:

$$\rho k_B T \kappa_T = \lim_{k \to 0} S(k).$$

(1.35)
1. STRUCTURE IN LIQUIDS AND GASES

Problems

1-1. A simple generalisation of the hard sphere fluid is the square well fluid, which also includes attraction between the spherical particles. The pair interaction in a square well fluid is given by

\[\varphi(r) = \begin{cases}
\infty & \text{for } r \leq \sigma \\
\epsilon & \text{for } \sigma < r < \lambda \sigma \\
0 & \text{for } r \geq \lambda \sigma
\end{cases} \]

Make a sketch of the pair interaction. Make a sketch of the radial distribution function at low density. Calculate the second virial coefficient for a square well fluid.

1-2. Using spherical coordinates and choosing the \(\mathbf{k} \)-vector along the \(z \)-axis, show that the structure factor of an isotropic fluid can also be written as

\[S(k) = 1 + 4\pi \rho \int_0^\infty dr r^2 [g(r) - 1] \frac{\sin(kr)}{kr} \]

Calculate the structure factor of a hard sphere fluid at low density. What is the limit for small \(k \)?
Chapter 2

Time dependent properties of liquids

2.1 Time correlation functions

In the rest of these lectures we will focus on time dependent properties of liquids, i.e. their dynamics. Even when a fluid appears to be at rest macroscopically, microscopically the molecules are continually changing their positions and velocities. Most observable quantities therefore fluctuate in time and we need a way to characterise the dynamics of these fluctuations. We do this by means of time correlation functions. For a quantity A, the time correlation function is defined as

$$\langle A(t)A(0) \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} d\tau A(\tau + t)A(\tau).$$

(2.1)

When $t = 0$, we get the average of A^2. When $t \to \infty$, $A(t + \tau)$ will be unrelated to $A(\tau)$ and the result will be $\langle A \rangle^2$. From Schwarz’s inequality we get $\langle A(t)A(0) \rangle \leq \{\langle A(t)A(t) \rangle \langle A(0)A(0) \rangle\}^{1/2} = \langle A^2 \rangle$. So, $\langle A(t)A(0) \rangle$ decays from $\langle A^2 \rangle$ at $t = 0$ to $\langle A \rangle^2$ for very large times.

A simple generalisation of Eq. (2.1) is

$$\langle A(t)B(0) \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} d\tau A(\tau + t)B(\tau).$$

(2.2)

When $B = A$, as in Eq. (2.1), we speak about autocorrelation functions.

In equilibrium, the origin of time is irrelevant, which means that $\langle A(t + s)B(s) \rangle$ is independent of s. Hence, using a dot over a quantity to indicate its time derivative, the following must be true in equilibrium:

$$\frac{d}{ds} \langle A(t + s)B(s) \rangle = \langle \dot{A}(t + s)B(s) \rangle + \langle A(t + s)\dot{B}(s) \rangle = 0,$$

(2.3)

from which we obtain the important property:

$$\langle \dot{A}(t + s)B(s) \rangle = - \langle A(t + s)\dot{B}(s) \rangle$$

(2.4)
For the initial slope of an autocorrelation function this says that
\[\frac{d}{dt} \langle A(t)A(0) \rangle \bigg|_{t=0} = 0, \] (2.5)
i.e. any time autocorrelation function starts out with a horizontal slope.

From Eq. (2.4) we can also derive the useful relation
\[\frac{d^2}{dt^2} \langle A(t+s)B(s) \rangle = -\left\langle \dot{A}(t+s)\dot{B}(s) \right\rangle. \] (2.6)

We will need this in section 2.3 when dealing with collective diffusion. For the initial decay of an autocorrelation function this says that
\[\frac{d^2}{dt^2} \langle A(t)A(0) \rangle \bigg|_{t=0} = -\left\langle \dot{A}^2 \right\rangle < 0, \] (2.7)
i.e. any time autocorrelation function is initially curved negatively.

2.2 Self-diffusion and the velocity autocorrelation function

Suppose we label some particles inside a very small region (a dot) in an otherwise homogeneous fluid, at time \(t = 0 \) at position \(\mathbf{r}(0) \), as in Fig. 2.1. When the dot, although on a macroscopic scale concentrated at \(\mathbf{r}(0) \), is dilute enough on a molecular scale, we may consider the concentration decay as due to the self-diffusion of the separate labeled particles. The conditional probability \(P(\mathbf{r}, t) \) that a particle is at \(\mathbf{r} \) at time \(t \), given it was at \(\mathbf{r}(0) \) at time \(t = 0 \), may then be obtained from Fick’s law:
\[\frac{\partial P(\mathbf{r}, t)}{\partial t} = D\nabla^2 P(\mathbf{r}, t), \] (2.8)
together with the boundary condition \(P(\mathbf{r}, 0) = \delta(\mathbf{r} - \mathbf{r}(0)) \). \(D \) is the self-diffusion coefficient, which has units of length squared over time (\(\text{m}^2/\text{s} \)). The mean square displacement of the labeled particles can be related to the self-diffusion coefficient as follows:
\[\frac{d}{dt} \langle |\mathbf{r}(t) - \mathbf{r}(0)|^2 \rangle = \int d^3\mathbf{r} |\mathbf{r}(t) - \mathbf{r}(0)|^2 \frac{\partial P(\mathbf{r}, t)}{\partial t} \]
\[= D \int d^3\mathbf{r} |\mathbf{r}(t) - \mathbf{r}(0)|^2 \nabla^2 P(\mathbf{r}, t) \]
\[= D \int d^3\mathbf{r} P(\mathbf{r}, t)\nabla^2 r^2 \]
\[= 6D, \] (2.9)
2. TIME DEPENDENT PROPERTIES OF LIQUIDS

Figure 2.2: Typical velocity autocorrelation function in a liquid. In this figure the relatively fast initial decay is clearly visible, whereas the slow decay at larger times is not. Nevertheless, the slow decay contributes considerably to the self-diffusion coefficient, Eq. (2.12).

where we have used partial integration and the fact that \(P(r, t) \) and its derivative are zero far from \(r(0) \). For real fluid particles Fick’s law only holds for large values of \(t \).

Integration of Eq. (2.9) yields the Einstein equation

\[
D = \lim_{t \to \infty} \frac{1}{6t} \langle |\mathbf{r}(t) - \mathbf{r}(0)|^2 \rangle. \tag{2.10}
\]

We may transform this equation to an expression involving the autocorrelation of the velocity \(\mathbf{v} = \dot{\mathbf{r}} \) of a labeled particle:

\[
\langle |\mathbf{r}(t) - \mathbf{r}(0)|^2 \rangle = \int_0^t dt' \int_0^{t'} dt'' \langle \mathbf{v}(t') \cdot \mathbf{v}(t'') \rangle
\]

\[
= 2 \int_0^t dt' \int_0^{t'} dt'' \langle \mathbf{v}(t') \cdot \mathbf{v}(t'') \rangle
\]

\[
= 2 \int_0^t dt' \int_0^{t'} dt'' \langle \mathbf{v}(t' - t'') \cdot \mathbf{v}(0) \rangle
\]

\[
= 2 \int_0^t dt' \int_0^{t'} d\tau \langle \mathbf{v}(\tau) \cdot \mathbf{v}(0) \rangle \tag{2.11}
\]

The last step follows after partial integration. Comparing with the Einstein equation (2.10), taking the limit for \(t \to \infty \), we finally find

\[
D = \frac{1}{3} \int_0^\infty dt \langle \mathbf{v}(t) \cdot \mathbf{v}(0) \rangle. \tag{2.12}
\]

The is the Green-Kubo relation for the self-diffusion coefficient.

In Fig. 2.2 a typical velocity autocorrelation is shown. After a short time the autocorrelation goes through zero; here the particle collides with some other particle in front of it and it reverses it’s velocity. For large values of \(t \) the velocity autocorrelation scales as \(t^{-3/2} \), which is a hydrodynamic effect. This very slow decay is often difficult to detect.

\(^1\)At short times the fluid particles are not yet moving completely randomly. For example, they may still be trapped inside a temporary cage formed by their neighbours. Fick’s law applies to time scales on which the particles are diffusing freely.
2.3 Onsager’s regression hypothesis

In the previous section we made use of the fact that the microscopic self-diffusion of a labeled particle in a liquid may for large times be described by a macroscopic law. We shall generalise this approach using Onsager’s regression hypothesis.

Consider an observable quantity A having zero mean, $\langle A \rangle = 0$. Due to fluctuations, however, A will have a nonzero value at (almost) all instants. Onsager’s regression hypothesis says that the decay of this fluctuation at large times and on macroscopic scales will be governed by the corresponding macroscopic laws.

Notice that the macroscopic laws usually apply to non-equilibrium situations. In formula Onsager’s hypothesis says

$$\langle A(t) \rangle_{A(0)} = A(0)\alpha(t),$$

(2.13)

where $\alpha(t)$ is determined by macroscopic laws. The average is a conditional average: it expresses the average time development of A, given that it was $A(0)$ at $t = 0$. Multiplying by $A(0)$ and averaging over all initial conditions we get

$$\langle A(t)A(0) \rangle = \langle A^2 \rangle \alpha(t).$$

(2.14)

The averages are now simple equilibrium averages. We shall illustrate the use of Eq. (2.14) with two examples in the next two sections.

2.4 Collective diffusion

2.4.1 Decay of macroscopic density fluctuations

In the first example, we will focus on the time dependence of density fluctuations in a liquid. Following Eqs. (1.29) and (1.30), we describe density fluctuations by means of their Fourier components, but now with an explicit time dependence:

$$\rho(\mathbf{r}, t) = \rho + \frac{1}{(2\pi)^3} \int d^3k \, \hat{\rho}(k, t) \exp \{-i\mathbf{k} \cdot \mathbf{r}\},$$

(2.15)

$$\hat{\rho}(k, t) = \int d^3r \, \{\rho(\mathbf{r}, t) - \rho\} \exp \{i\mathbf{k} \cdot \mathbf{r}\}.$$

(2.16)

To apply Onsager’s regression hypothesis, we first need to know how a macroscopic density fluctuation decays. Suppose at time $t = 0$ we prepare a fluid system with a macroscopic sinusoidal density fluctuation, see Fig. 2.3. In the above equations this corresponds to a situation in which there is only one non-zero Fourier component $\hat{\rho}(k, 0)$:

$$\rho(\mathbf{r}, 0) = \rho + \frac{1}{(2\pi)^3} \hat{\rho}(k, 0) \exp \{-i\mathbf{k} \cdot \mathbf{r}\}$$

(2.17)
2. TIME DEPENDENT PROPERTIES OF LIQUIDS

According to Fick’s law, Eq. (2.8), the rate of decay of such a macroscopic density fluctuation is determined by the so-called collective diffusion coefficient D:

$$\frac{\partial}{\partial t} \left[\frac{1}{(2\pi)^3} \hat{\rho}(k, t) \exp \{-ik \cdot r\} \right] = D \nabla^2 \left[\frac{1}{(2\pi)^3} \hat{\rho}(k, t) \exp \{-ik \cdot r\} \right],$$

$$\exp \{-ik \cdot r\} \frac{\partial \hat{\rho}(k, t)}{\partial t} = -D(k)k^2 \hat{\rho}(k, t) \exp \{-ik \cdot r\},$$

$$\hat{\rho}(k, t) = \hat{\rho}(k, 0) \exp \{-D(k)k^2 t\}.$$ (2.18)

Note that we have included the possibility that the collective diffusion coefficient depends on the wavelength of the density disturbance, $D = D(k)$. Eq. (2.18) shows that a density fluctuation smoothens out with a relaxation time $\tau(k) = 1/(D(k)k^2)$. Large k (short wavelength) fluctuations decay rapidly, whereas relaxing small k (long wavelength) fluctuations can take a very long time. This is a consequence of the fact that relaxing a long wavelength inhomogeneity requires transport of fluid particles over large length scales, which is a slow process.

2.4.2 Microscopic equation for $D(k)$

Let us now see if we can derive a microscopic (and equilibrium) equation for the collective diffusion coefficient. We have encountered the microscopic variable corresponding to a density Fourier component before, see Eq. (1.32). We now add an explicit time dependence:

$$\hat{\rho}(k, t) = \int d^3r \left\{ \sum_j \delta(r - r_j(t)) - \rho \right\} \exp \{ik \cdot r\}$$

$$= \sum_{j=1}^N \exp \{ik \cdot r_j(t)\} - (2\pi)^3 \rho \delta(k).$$ (2.19)

Eq. (2.14) states that the time autocorrelation function of this variable decays according to:

$$\langle \hat{\rho}(k, t)\hat{\rho}^*(k, 0) \rangle = \langle \hat{\rho}(k, 0)\hat{\rho}^*(k, 0) \rangle \exp \{-D(k)k^2 t\}.$$ (2.20)

To calculate $D(k)$ we differentiate with respect to t and divide by $-k^2$; moreover we shall assume that k is small enough to set $\exp \{-D(k)k^2 t\} \approx 1$ for all t of interest:

$$-\frac{1}{k^2} \frac{d}{dt} \langle \hat{\rho}(k, t)\hat{\rho}^*(k, 0) \rangle = \langle \hat{\rho}(k, 0)\hat{\rho}^*(k, 0) \rangle D(k)$$ (2.21)

$$-\frac{1}{k^2} \int_0^t d\tau \frac{d^2}{dt^2} \langle \hat{\rho}(k, \tau)\hat{\rho}^*(k, 0) \rangle = \langle \hat{\rho}(k, 0)\hat{\rho}^*(k, 0) \rangle D(k)$$ (2.22)
Using Eq. (2.6) we may write this as

$$
\int_0^t \frac{1}{k^2} \left\langle \dot{\rho}(k, \tau) \dot{\rho}^*(k, 0) \right\rangle = \left\langle \dot{\rho}(k, 0) \dot{\rho}^*(k, 0) \right\rangle D(k). \tag{2.23}
$$

It is now convenient to choose a specific orientation for the wave vector, say the
z-axis: \(k = k \hat{e}_z \). Then

$$
\int_0^t d\tau \left\langle \sum_i \sum_j v_{iz}(\tau) v_{jz}(0) \exp \{i k (z_i(\tau) - z_j(0))\} \right\rangle = \left\langle \dot{\rho}(k, 0) \dot{\rho}^*(k, 0) \right\rangle D(k).
$$

(2.24)

Using the definition of the structure factor, Eq. (1.33), we finally obtain:

$$
D(k) = \frac{1}{S(k)} \int_0^\infty dt \frac{1}{N} \left\langle \sum_i \sum_j v_{iz}(t) v_{jz}(0) \exp \{i k (z_i(t) - z_j(0))\} \right\rangle.
$$

(2.25)

This is the Green-Kubo relation for the collective diffusion coefficient. For comparison, the Green-Kubo relation for the self-diffusion coefficient, which we encountered in Eq. (2.12), may be rewritten as

$$
D_{\text{self}} = \int_0^\infty \frac{1}{N} \left\langle \sum_i v_{iz}(t) v_{iz}(0) \right\rangle,
$$

(2.26)

which clearly shows the difference between collective and single-particle properties.

2.5 Shear viscosity

2.5.1 Macroscopic hydrodynamics

In the second example, we will focus on transversal transport of momentum through a fluid. Suppose the fluid velocity on a macroscopic scale is described by the fluid velocity field \(\mathbf{v}(r) \). When two neighbouring fluid volume elements move with different velocities, they will experience a friction force proportional to the area of the surface between the two fluid volume elements. Moreover, even without relative motion, the volume elements will be able to exchange momentum through the motions of, and interactions between, the constituent particles.

All the above forces can conveniently be summarized in the stress tensor. Consider a surface element of size \(dA \) and normal \(\hat{n} \). Let \(d\mathbf{F} \) be the force exerted by the fluid below the surface element on the fluid above the fluid element, see Fig. 2.4. The stress tensor \(\mathbf{S} \) is defined as the tensor that transforms the vector \(\hat{n}dA \) into the force vector \(d\mathbf{F} \):

$$
dF_\alpha = - \sum_\beta S_{\alpha\beta} \hat{n}_\beta dA = - (\mathbf{S} \cdot \hat{n})_\alpha dA,
$$

(2.27)

where \(\alpha \) and \(\beta \) run from 1 to 3 (or \(x, y, \) and \(z \)). Note that the unit of stress is that of pressure (Pa).
2. TIME DEPENDENT PROPERTIES OF LIQUIDS

Figure 2.4: The stress tensor \mathbf{S} transforms the normal \mathbf{n} of a surface element dA to the force dF exerted by the fluid below the surface element on the fluid above the fluid element.

Many fluids can be described by assuming that the stress tensor consists of a part which is independent of the flow velocity and a part which depends linearly on the instantaneous derivatives $\partial v_\alpha / \partial x_\beta$. In hydrodynamics it is shown that the most general stress tensor having these properties then reads

$$ S_{\alpha\beta} = \eta \left\{ \frac{\partial v_\alpha}{\partial x_\beta} + \frac{\partial v_\beta}{\partial x_\alpha} \right\} - \left\{ P + \left(\frac{2}{3} \eta - \kappa \right) \nabla \cdot \mathbf{v} \right\} \delta_{\alpha\beta}. $$

(2.28)

Here $\delta_{\alpha\beta}$ is the Kronecker delta (1 if $\alpha = \beta$, 0 otherwise), η is the shear viscosity, κ is the bulk viscosity, and P the pressure.

Combining Newton’s equations of motion (expressing the law of conservation of momentum) with the law of conservation of mass, it is possible to derive the macroscopic Navier-Stokes equation,

$$ \rho_m \frac{D}{Dt} \mathbf{v} = \nabla \cdot \mathbf{S}, $$

(2.29)

where $\rho_m = m\rho$ is the mass density and $D/Dt = \mathbf{v} \cdot \nabla + \partial/\partial t$ is the total derivative. The combination of Eq. (2.28) with Eq. (2.29), sometimes also referred to as the Navier-Stokes equation, is rather formidable. Fortunately, many flow fields of interest may be described assuming that the fluid is incompressible. In that case $\nabla \cdot \mathbf{v} = 0$. Assuming moreover that the velocities are small, and that second order nonlinear terms in \mathbf{v} may be neglected, we obtain Stokes equations for incompressible flow:

$$ m\rho \frac{\partial \mathbf{v}}{\partial t} = \eta \nabla^2 \mathbf{v} - \nabla P $$

(2.30)

$$ \nabla \cdot \mathbf{v} = 0. $$

(2.31)

These are the hydrodynamic equations that we will use from here on.

Our aim is to derive a microscopic equation for the shear viscosity η. To this end, let us first see how a wavelike velocity field

$$ \rho \mathbf{v}(\mathbf{r}, t) = \frac{1}{(2\pi)^3} \mathbf{g}(\mathbf{k}, t) \exp \{-i\mathbf{k} \cdot \mathbf{r}\} $$

(2.32)

decays macroscopically. Introducing this in the incompressibility equation (2.31) shows that the only possible wavelike velocity field is a transversal one:

$$ \mathbf{g}(\mathbf{k}, t) \cdot \mathbf{k} = 0. $$

(2.33)

2In the more general case of complex fluids, the stress tensor depends on the history of fluid flow (the fluid has a memory) and has both viscous and elastic components.

3The factor $(2\pi)^{-3}$ appears for the same reason as in Eq. (2.15), so that $\mathbf{g}(\mathbf{k}, t)$ may be viewed as a Fourier component of the velocity field.
2. TIME DEPENDENT PROPERTIES OF LIQUIDS

Taking the divergence of Eq. (2.30) and using Eq. (2.31) we get $\nabla^2 P = 0$. It is now convenient to choose specific orientations for the wave vector and velocity field. Suppose that the wave vector is oriented along the z-axis, $k = k \hat{e}_z$, and that the flow is along the y-axis, $g(k, t) = g_y(k, t) \hat{e}_y$, see Fig. 2.5. Looking at the x and z components of Eq. (2.30) this yields $\partial P/\partial x = \partial P/\partial z = 0$. Together with $\nabla^2 P = 0$ this also means that $\partial P/\partial y = 0$. The only remaining component in Eq. (2.30) then reads

$$m \rho \frac{\partial v_y}{\partial t} = \eta \frac{\partial^2 v_y}{\partial z^2},$$

$$m \rho \frac{\partial g_y}{\partial t} = -\eta k^2 g_y$$

$$g_y(k, t) = g_y(k, 0) \exp \left\{ -\frac{\eta m \rho}{k^2} t \right\}. \quad (2.34)$$

This shows that a macroscopic transversal velocity field decays to zero with a relaxation time $\tau(k) = m \rho / (\eta k^2)$.

2.5.2 Microscopic equation for η

We will now derive a microscopic (and equilibrium) equation for the shear viscosity. The microscopic variable corresponding to $g(k, t)$ is

$$g(k, t) = \int d^3 r \sum_j v_j(t) \delta (r - r_j(t)) \exp \{ i k \cdot r \}$$

$$= \sum_j v_j(t) \exp \{ i k \cdot r_j(t) \}. \quad (2.35)$$

Choosing k along z and g along y, Onsager’s regression hypothesis, Eq. (2.14), states that the time autocorrelation function of this variable decays according to

$$\langle g_y(k, t) g_y^*(k, 0) \rangle = \langle g_y(k, 0) g_y^*(k, 0) \rangle \exp \left\{ -\frac{\eta m \rho}{k^2} t \right\}. \quad (2.36)$$

Following the same analysis as in going from Eq. (2.20) to (2.23), we obtain

$$\int_0^t d\tau \frac{1}{K^2} \langle \dot{g}_y(k, t) \dot{g}_y^*(k, 0) \rangle = \langle g_y(k, 0) g_y^*(k, 0) \rangle \frac{\eta m \rho}{k^2} \exp \left\{ -\frac{\eta m \rho}{k^2} t \right\}. \quad (2.37)$$
From statistical mechanics it is known that \(\langle v_{y,j} \rangle = 0 \) and \(\langle v_{y,j} v_{y,k} \rangle = (k_B T/m) \delta_{jk} \) (equipartition theorem). In the limit of small \(k \) this can be used to replace \(\langle g_y(k,0)g_y^*(k,0) \rangle \) by \(\langle g_y(0,0)g_y^*(0,0) \rangle = N k_B T/m. \) Then

\[
\eta = \frac{1}{V k_B T} \lim_{k \to 0} \int_0^\infty \frac{dt}{k^2} \left(\langle m \dot{y}_y(k,t) m \dot{y}_y^*(k,0) \rangle \right).
\] (2.38)

All that remains is to write out the terms \(m \dot{y}_y(k,t) \). Remembering that \(\dot{r}_j = \mathbf{v}_j \) we find

\[
m \dot{y}_y(k,t) = \sum_{j=1}^N \left\{ m \dot{v}_{y,j}(t) + i k m v_{z,j}(t) v_{y,j}(t) \right\} \exp \{ ikz_j(t) \},
\] (2.39)

part of which can be written in terms of forces:

\[
\sum_{j=1}^N m \dot{v}_{y,j} \exp \{ ikz_j \} = \sum_{j=1}^N \sum_{i \neq j} F_{y,j}^{(i)} \exp \{ ikz_j \} = \frac{1}{2} \sum_{j=1}^N \sum_{i=1}^N F_{y,j}^{(i)} [\exp \{ ikz_j \} - \exp \{ ikz_i \}] = \frac{1}{2} ik \sum_{j=1}^N \sum_{i=1}^N F_{y,j}^{(i)} (z_j - z_i). \] (2.40)

Here \(F_{y,j}^{(i)} \) is the force in the \(y \)-direction exerted by particle \(i \) on particle \(j \). In the second step of Eq. (2.40) we have used Newton’s principle of action and reaction, \(F_{y,j}^{(i)} = -F_{y,j}^{(j)} \). In the third step we have used the fact that \(k \) will be very small.

Collecting everything together, we may write

\[
\eta = \frac{V}{k_B T} \int_0^\infty dt \langle \sigma_{yz}(t) \sigma_{yz}(0) \rangle,
\] (2.41)

where the microscopic stress tensor is defined as

\[
\sigma_{yz}(t) = \frac{1}{V} \left\{ \sum_j m v_{y,j}(t) v_{z,j}(t) + \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N F_{y,j}^{(i)}(t)(z_j(t) - z_i(t)) \right\}.
\] (2.42)

We recognise two contributions to the microscopic stress tensor: momentum transport through particle motion (the kinetic \(mvv \) term) and momentum transport through particle interactions (the virial \(Fr \) term).

Eq. (2.41) is the Green-Kubo relation for the shear viscosity. The above procedure also yield a microscopic expression for the so-called shear relaxation modulus,

\[
G(t) = \frac{V}{k_B T} \langle \sigma_{yz}(t) \sigma_{yz}(0) \rangle.
\] (2.43)

Macroscopically, \(G(t) \) is the linear stress relaxation in the system following a sudden step strain. In agreement with Eq. (2.41) its integral is the shear viscosity, \(\eta = \int_0^\infty G(t) dt \).
These equations are useful because they enable us to measure the shear relaxation modulus and shear viscosity in a simulation of a liquid without actually shearing the system, but rather by analyzing the spontaneous fluctuations in forces and velocities. As an example, in Fig. 2.6 we show the shear relaxation modulus measured in a molecular dynamics simulation of a melt of polyethylene chains at 450 K. Note that in this particular example the stress does not relax immediately to zero, but remains at a plateau value of approximately 3 MPa for times between 5 and 50 ns. Such behaviour is indicative of temporary elasticity, which is typical of an entangled polymeric liquid.

Problems

2-1. Follow and prove the steps made in Eq. 2.11 to arrive at the Green-Kubo equation for the self-diffusion coefficient.
2-2. Under what conditions can one expect the collective diffusion coefficient to be equal to the self-diffusion coefficient?
2-3. Follow and prove the steps made to arrive at Eq. (2.41), starting from Eq. (2.38).